diff --git a/app/src/main/java/com/example/ueberwachungssystem/Detection/Accelerometer.java b/app/src/main/java/com/example/ueberwachungssystem/Detection/Accelerometer.java new file mode 100644 index 0000000..0d4ac3a --- /dev/null +++ b/app/src/main/java/com/example/ueberwachungssystem/Detection/Accelerometer.java @@ -0,0 +1,108 @@ +package com.example.ueberwachungssystem.Detection; + +import static java.lang.Math.sqrt; + +import android.content.Context; +import android.hardware.Sensor; +import android.hardware.SensorEvent; +import android.hardware.SensorEventListener; +import android.hardware.SensorManager; + + +/** + * Accelerometer inherits some methods from abstract Detector class (more info there) + * + * + * USE FROM MAIN ACTIVITY: + * + * Accelerometer beschleunigungssensor = new Accelerometer(this); + * onCreate: + * //Accelerometer Setup + * beschleunigungssensor = new Accelerometer(this, logger, textViewLog); //logger and textview only for debugging necessary + * beschleunigungssensor.getSensor(); + * + * //Starting Detection: + * beschleunigungssensor.startDetection(); + * //Stopping Detection: also recommended at onPause to avoid unnecessary battery consumption + * beschleunigungssensor.stopDetection(); + * + * */ + +public class Accelerometer extends Detector implements SensorEventListener { + + public SensorManager sensorManager; + private static final int sensorType = Sensor.TYPE_LINEAR_ACCELERATION; + private Sensor accelerometer; + private Context context; + boolean alarm = false; + //Preallocate memory for the data of each axis of the acceleration sensor + float x; + float y; + float z; + float betrag; //Betrag aller drei Achsen sqrt(x*x + y*y + z*z) + private DetectionReport detectionReport; + + // In constructor pass Activity, Context and TextView from MainActivity in Accelerometer class + public Accelerometer(Context context){ + super(); //von Detektor + this.context = context; + } + + public void getSensor(){ + sensorManager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE); + if(sensorManager.getSensorList(sensorType).size()==0) { + accelerometer = null; + } + else { + accelerometer = sensorManager.getSensorList(sensorType).get(0); + } + } + + @Override + public void onSensorChanged(SensorEvent event) { + try { + checkAlarm(event); + } catch (InterruptedException e) { + throw new RuntimeException(e); + } + } + + public void checkAlarm (SensorEvent event) throws InterruptedException { + x = event.values[0]; + y = event.values[1]; + z = event.values[2]; + betrag = (float) sqrt(x*x + y*y + z*z); + float threshold = 1.5F; + + if (!alarm) { + if (betrag > threshold) { + alarm = true; + reportViolation("Bewegung", betrag); + } + } else { + if (betrag < threshold) { + alarm = false; + } else { + } + } + } + + @Override + public void onAccuracyChanged(Sensor sensor, int accuracy) { + } + + @Override + public void startDetection() { + // entspricht void start() + //getSensor(); + if (accelerometer != null) { + sensorManager.registerListener(this, accelerometer, SensorManager.SENSOR_DELAY_GAME); + } + } + + @Override + public void stopDetection() { + // entspricht void stop() + sensorManager.unregisterListener(this, accelerometer); + } +} \ No newline at end of file diff --git a/app/src/main/java/com/example/ueberwachungssystem/Detection/AudioRecorder.java b/app/src/main/java/com/example/ueberwachungssystem/Detection/AudioRecorder.java new file mode 100644 index 0000000..aa16846 --- /dev/null +++ b/app/src/main/java/com/example/ueberwachungssystem/Detection/AudioRecorder.java @@ -0,0 +1,74 @@ +package com.example.ueberwachungssystem.Detection; + +import android.content.Context; +import android.media.MediaPlayer; +import android.media.MediaRecorder; +import android.widget.Toast; + +import java.io.File; +import java.io.IOException; +import java.time.LocalDateTime; +import java.time.format.DateTimeFormatter; + +public class AudioRecorder { + private final Context context; + private MediaRecorder mediaRecorder = null; + private boolean isRecording = false; + private File outputDir; // Default: in app files directory + + + public AudioRecorder (Context context) { + this.context = context; + this.outputDir = context.getFilesDir(); + } + + public void startRecording() { + // Handle logic + if (outputDir == null) + return; + if (isRecording) + return; + isRecording = true; + + // Setup Audio Recorder for output Format: 3GP + mediaRecorder = new MediaRecorder(); + mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC); + mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP); + mediaRecorder.setOutputFile(outputDir + "/" + generateFileName() + ".3gp"); + mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB); + try { + mediaRecorder.prepare(); + } catch (IOException e) { + e.printStackTrace(); + } + mediaRecorder.start(); + } + + public void stopRecording() { + if (mediaRecorder != null) { + mediaRecorder.stop(); + mediaRecorder.reset(); + mediaRecorder.release(); + mediaRecorder = null; + isRecording = false; + Toast.makeText(context, "audio recording saved", Toast.LENGTH_SHORT).show(); + } + } + + public boolean isRecording(){ + return isRecording; + } + + public void setOutputDir(File outputDir) { + this.outputDir = outputDir; + } + + private String generateFileName(){ + // Get the current timestamp + LocalDateTime currentTime = LocalDateTime.now(); + // Define the format for the timestamp + DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyyMMdd_HHmmss"); + // Return the timestamp as a string + return currentTime.format(formatter); + } +} diff --git a/app/src/main/java/com/example/ueberwachungssystem/Detection/Detector.java b/app/src/main/java/com/example/ueberwachungssystem/Detection/Detector.java new file mode 100644 index 0000000..826878b --- /dev/null +++ b/app/src/main/java/com/example/ueberwachungssystem/Detection/Detector.java @@ -0,0 +1,76 @@ +package com.example.ueberwachungssystem.Detection; + +import android.os.CountDownTimer; + +import androidx.annotation.NonNull; +import androidx.camera.core.ExperimentalGetImage; + + +abstract public class Detector { + private OnDetectionListener listener; + private boolean isDetecting = false; + private boolean extendViolation = false; + + // Countdown parameters + private final int COUNTDOWN_TIME = 10000; // milliseconds + private final int COUNTDOWN_POLLING_TIME = 100; // milliseconds + + /** Constructor - takes context of current activity */ + public Detector() {} + + + /** On Detection Listener - runs when violation is reported */ + public interface OnDetectionListener { + void onDetection(@NonNull DetectionReport detectionReport); + } + public void setOnDetectionListener(@NonNull OnDetectionListener listener) { + this.listener = listener; + } + + /** Triggers onDetectionListener - call this to trigger violation/alarm */ + public void reportViolation(String detectionType, float amplitude) { + if (listener != null) { + if (!isDetecting) { + isDetecting = true; + DetectionReport detectionReport = new DetectionReport(true, detectionType, amplitude); + listener.onDetection(detectionReport); + startDetectionTimer(detectionType, amplitude); + } else { + extendViolation = true; + } + } else { + isDetecting = false; + extendViolation = false; + } + } + + private void startDetectionTimer(String detectionType, float amplitude) { + isDetecting = true; + new CountDownTimer((long) COUNTDOWN_TIME, COUNTDOWN_POLLING_TIME) { + @Override + public void onTick(long millisUntilFinished) { + if (extendViolation) { + extendViolation = false; + startDetectionTimer(detectionType, amplitude); + this.cancel(); + } + } + @Override + public void onFinish() { + isDetecting = false; + DetectionReport detectionReport = new DetectionReport(false, detectionType, amplitude); + listener.onDetection(detectionReport); + } + }.start(); + } + + public void extendViolation(){ + this.extendViolation = true; + } + + /** Starts Detection (abstract method: needs to be overridden in child class) */ + public abstract void startDetection(); + + /** Stops Detection (abstract method: needs to be overridden in child class) */ + public abstract void stopDetection(); +} \ No newline at end of file diff --git a/app/src/main/java/com/example/ueberwachungssystem/Detection/OpenCVHelper.java b/app/src/main/java/com/example/ueberwachungssystem/Detection/OpenCVHelper.java new file mode 100644 index 0000000..7a6cb28 --- /dev/null +++ b/app/src/main/java/com/example/ueberwachungssystem/Detection/OpenCVHelper.java @@ -0,0 +1,109 @@ +package com.example.ueberwachungssystem.Detection; + +import android.graphics.Bitmap; +import android.media.Image; +import android.widget.ImageView; + +import androidx.annotation.NonNull; +import androidx.camera.core.ExperimentalGetImage; +import androidx.camera.core.ImageProxy; + +import org.opencv.android.Utils; +import org.opencv.core.Core; +import org.opencv.core.CvType; +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.nio.ByteBuffer; +import java.util.ArrayList; +import java.util.Collections; +import java.util.List; + + +@ExperimentalGetImage +public class OpenCVHelper { + + /** OpenCV helper methods **/ + public static Mat addGaussianBlur(Mat inputMat, Size kernelSize){ + Mat outputMat = new Mat(); + Imgproc.GaussianBlur(inputMat, outputMat, kernelSize, 0); + return outputMat; + } + + public static Mat addBlur(Mat inputMat, Size kernelSize){ + Mat outputMat = new Mat(); + Imgproc.blur(inputMat, outputMat, kernelSize); + return outputMat; + } + + public static Mat extractYChannel(@NonNull ImageProxy imgProxy) { + Image img = imgProxy.getImage(); + + assert img != null; + ByteBuffer yBuffer = img.getPlanes()[0].getBuffer(); + byte[] yData = new byte[yBuffer.remaining()]; + yBuffer.get(yData); + + Mat yMat = new Mat(img.getHeight(), img.getWidth(), CvType.CV_8UC1); + yMat.put(0, 0, yData); + + return yMat; + } + + public static Mat thresholdPixels(Mat inputMat, Mat previousImage, int threshold){ + Mat diffImage = new Mat(); + Core.absdiff(inputMat, previousImage, diffImage); + Mat binaryMat = new Mat(); + Imgproc.threshold(diffImage, binaryMat, threshold, 255, Imgproc.THRESH_BINARY); + return binaryMat; + } + + + public static Mat thresholdContourArea(Mat inputMat, float areaThreshold){ + List contours = new ArrayList<>(); + Mat hierarchy = new Mat(); + Imgproc.findContours(inputMat, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); + + Mat outputMat = new Mat(inputMat.size(), inputMat.type(), new Scalar(0)); + // Iterate over the contours and draw only the larger contours on the outputMat + for (MatOfPoint contour : contours) { + double contourArea = Imgproc.contourArea(contour); + if (contourArea > areaThreshold) { + Imgproc.drawContours(outputMat, Collections.singletonList(contour), 0, new Scalar(255), -1); + } + } + // Apply the outputMat as a mask to the dilatedImage + Mat maskedImage = new Mat(); + inputMat.copyTo(maskedImage, outputMat); + return outputMat; + } + + public static Mat dilateBinaryMat(Mat inputMat, Size kernelSize){ + Mat dilatedMat = new Mat(); + Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_ELLIPSE, kernelSize); + Imgproc.dilate(inputMat, dilatedMat, kernel); + return dilatedMat; + } + + public static int countNonZeroPixels(Mat inputImage) { + if (inputImage != null) + return Core.countNonZero(inputImage); + else + return 0; + } + + + public static void debugMat(Mat mat, ImageView imageView) { + if (imageView == null || mat == null) + return; + + Bitmap bitmap = Bitmap.createBitmap(mat.cols(), mat.rows(), Bitmap.Config.ARGB_8888); + Utils.matToBitmap(mat, bitmap); + + // Display the bitmap in an ImageView + imageView.setImageBitmap(bitmap); + } +} diff --git a/app/src/main/java/com/example/ueberwachungssystem/Detection/Signalverarbeitung/Complex.java b/app/src/main/java/com/example/ueberwachungssystem/Detection/Signalverarbeitung/Complex.java new file mode 100644 index 0000000..07b514b --- /dev/null +++ b/app/src/main/java/com/example/ueberwachungssystem/Detection/Signalverarbeitung/Complex.java @@ -0,0 +1,148 @@ +package com.example.ueberwachungssystem.Detection.Signalverarbeitung; + +import java.util.Objects; + +public class Complex { + private final double re; // the real part + private final double im; // the imaginary part + + // create a new object with the given real and imaginary parts + public Complex(double real, double imag) { + re = real; + im = imag; + } + + // return a string representation of the invoking com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object + public String toString() { + if (im == 0) return re + ""; + if (re == 0) return im + "i"; + if (im < 0) return re + " - " + (-im) + "i"; + return re + " + " + im + "i"; + } + + // return abs/modulus/magnitude + public double abs() { + return Math.hypot(re, im); + } + + // return angle/phase/argument, normalized to be between -pi and pi + public double phase() { + return Math.atan2(im, re); + } + + // return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this + b) + public Complex plus(Complex b) { + Complex a = this; // invoking object + double real = a.re + b.re; + double imag = a.im + b.im; + return new Complex(real, imag); + } + + // return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this - b) + public Complex minus(Complex b) { + Complex a = this; + double real = a.re - b.re; + double imag = a.im - b.im; + return new Complex(real, imag); + } + + // return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this * b) + public Complex times(Complex b) { + Complex a = this; + double real = a.re * b.re - a.im * b.im; + double imag = a.re * b.im + a.im * b.re; + return new Complex(real, imag); + } + + // return a new object whose value is (this * alpha) + public Complex scale(double alpha) { + return new Complex(alpha * re, alpha * im); + } + + // return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the conjugate of this + public Complex conjugate() { + return new Complex(re, -im); + } + + // return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the reciprocal of this + public Complex reciprocal() { + double scale = re * re + im * im; + return new Complex(re / scale, -im / scale); + } + + // return the real or imaginary part + public double re() { + return re; + } + + public double im() { + return im; + } + + // return a / b + public Complex divides(Complex b) { + Complex a = this; + return a.times(b.reciprocal()); + } + + // return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex exponential of this + public Complex exp() { + return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im)); + } + + // return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex sine of this + public Complex sin() { + return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im)); + } + + // return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex cosine of this + public Complex cos() { + return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im)); + } + + // return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex tangent of this + public Complex tan() { + return sin().divides(cos()); + } + + // a static version of plus + public static Complex plus(Complex a, Complex b) { + double real = a.re + b.re; + double imag = a.im + b.im; + Complex sum = new Complex(real, imag); + return sum; + } + + // See Section 3.3. + public boolean equals(Object x) { + if (x == null) return false; + if (this.getClass() != x.getClass()) return false; + Complex that = (Complex) x; + return (this.re == that.re) && (this.im == that.im); + } + + // See Section 3.3. + public int hashCode() { + return Objects.hash(re, im); + } + + // sample client for testing + public static void main(String[] args) { + Complex a = new Complex(5.0, 6.0); + Complex b = new Complex(-3.0, 4.0); + + System.out.println("a = " + a); + System.out.println("b = " + b); + System.out.println("Re(a) = " + a.re()); + System.out.println("Im(a) = " + a.im()); + System.out.println("b + a = " + b.plus(a)); + System.out.println("a - b = " + a.minus(b)); + System.out.println("a * b = " + a.times(b)); + System.out.println("b * a = " + b.times(a)); + System.out.println("a / b = " + a.divides(b)); + System.out.println("(a / b) * b = " + a.divides(b).times(b)); + System.out.println("conj(a) = " + a.conjugate()); + System.out.println("|a| = " + a.abs()); + System.out.println("tan(a) = " + a.tan()); + } +} \ No newline at end of file diff --git a/app/src/main/java/com/example/ueberwachungssystem/Detection/Signalverarbeitung/FFT.java b/app/src/main/java/com/example/ueberwachungssystem/Detection/Signalverarbeitung/FFT.java new file mode 100644 index 0000000..dc97fd1 --- /dev/null +++ b/app/src/main/java/com/example/ueberwachungssystem/Detection/Signalverarbeitung/FFT.java @@ -0,0 +1,246 @@ +package com.example.ueberwachungssystem.Detection.Signalverarbeitung; +// Source: https://introcs.cs.princeton.edu/java/97data/FFT.java.html + +/****************************************************************************** + * Compilation: javac FFT.java + * Execution: java FFT n + * Dependencies: com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex.java + * + * Compute the FFT and inverse FFT of a length n complex sequence + * using the radix 2 Cooley-Tukey algorithm. + * Bare bones implementation that runs in O(n log n) time and O(n) + * space. Our goal is to optimize the clarity of the code, rather + * than performance. + * + * This implementation uses the primitive root of unity w = e^(-2 pi i / n). + * Some resources use w = e^(2 pi i / n). + * + * Reference: https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII.pdf + * + * Limitations + * ----------- + * - assumes n is a power of 2 + * + * - not the most memory efficient algorithm (because it uses + * an object type for representing complex numbers and because + * it re-allocates memory for the subarray, instead of doing + * in-place or reusing a single temporary array) + * + * For an in-place radix 2 Cooley-Tukey FFT, see + * https://introcs.cs.princeton.edu/java/97data/InplaceFFT.java.html + * + ******************************************************************************/ + +public class FFT { + + // compute the FFT of x[], assuming its length n is a power of 2 + public static Complex[] fft(Complex[] x) { + int n = x.length; + + // base case + if (n == 1) return new Complex[]{x[0]}; + + // radix 2 Cooley-Tukey FFT + if (n % 2 != 0) { + throw new IllegalArgumentException("n is not a power of 2"); + } + + // compute FFT of even terms + Complex[] even = new Complex[n / 2]; + for (int k = 0; k < n / 2; k++) { + even[k] = x[2 * k]; + } + Complex[] evenFFT = fft(even); + + // compute FFT of odd terms + Complex[] odd = even; // reuse the array (to avoid n log n space) + for (int k = 0; k < n / 2; k++) { + odd[k] = x[2 * k + 1]; + } + Complex[] oddFFT = fft(odd); + + // combine + Complex[] y = new Complex[n]; + for (int k = 0; k < n / 2; k++) { + double kth = -2 * k * Math.PI / n; + Complex wk = new Complex(Math.cos(kth), Math.sin(kth)); + y[k] = evenFFT[k].plus(wk.times(oddFFT[k])); + y[k + n / 2] = evenFFT[k].minus(wk.times(oddFFT[k])); + } + return y; + } + + + // compute the inverse FFT of x[], assuming its length n is a power of 2 + public static Complex[] ifft(Complex[] x) { + int n = x.length; + Complex[] y = new Complex[n]; + + // take conjugate + for (int i = 0; i < n; i++) { + y[i] = x[i].conjugate(); + } + + // compute forward FFT + y = fft(y); + + // take conjugate again + for (int i = 0; i < n; i++) { + y[i] = y[i].conjugate(); + } + + // divide by n + for (int i = 0; i < n; i++) { + y[i] = y[i].scale(1.0 / n); + } + + return y; + + } + + // compute the circular convolution of x and y + public static Complex[] cconvolve(Complex[] x, Complex[] y) { + + // should probably pad x and y with 0s so that they have same length + // and are powers of 2 + if (x.length != y.length) { + throw new IllegalArgumentException("Dimensions don't agree"); + } + + int n = x.length; + + // compute FFT of each sequence + Complex[] a = fft(x); + Complex[] b = fft(y); + + // point-wise multiply + Complex[] c = new Complex[n]; + for (int i = 0; i < n; i++) { + c[i] = a[i].times(b[i]); + } + + // compute inverse FFT + return ifft(c); + } + + + // compute the linear convolution of x and y + public static Complex[] convolve(Complex[] x, Complex[] y) { + Complex ZERO = new Complex(0, 0); + + Complex[] a = new Complex[2 * x.length]; + for (int i = 0; i < x.length; i++) a[i] = x[i]; + for (int i = x.length; i < 2 * x.length; i++) a[i] = ZERO; + + Complex[] b = new Complex[2 * y.length]; + for (int i = 0; i < y.length; i++) b[i] = y[i]; + for (int i = y.length; i < 2 * y.length; i++) b[i] = ZERO; + + return cconvolve(a, b); + } + + // compute the DFT of x[] via brute force (n^2 time) + public static Complex[] dft(Complex[] x) { + int n = x.length; + Complex ZERO = new Complex(0, 0); + Complex[] y = new Complex[n]; + for (int k = 0; k < n; k++) { + y[k] = ZERO; + for (int j = 0; j < n; j++) { + int power = (k * j) % n; + double kth = -2 * power * Math.PI / n; + Complex wkj = new Complex(Math.cos(kth), Math.sin(kth)); + y[k] = y[k].plus(x[j].times(wkj)); + } + } + return y; + } + + // display an array of com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex numbers to standard output + public static void show(Complex[] x, String title) { + System.out.println(title); + System.out.println("-------------------"); + for (int i = 0; i < x.length; i++) { + System.out.println(x[i]); + } + System.out.println(); + } + + /*************************************************************************** + * Test client and sample execution + * + * % java FFT 4 + * x + * ------------------- + * -0.03480425839330703 + * 0.07910192950176387 + * 0.7233322451735928 + * 0.1659819820667019 + * + * y = fft(x) + * ------------------- + * 0.9336118983487516 + * -0.7581365035668999 + 0.08688005256493803i + * 0.44344407521182005 + * -0.7581365035668999 - 0.08688005256493803i + * + * z = ifft(y) + * ------------------- + * -0.03480425839330703 + * 0.07910192950176387 + 2.6599344570851287E-18i + * 0.7233322451735928 + * 0.1659819820667019 - 2.6599344570851287E-18i + * + * c = cconvolve(x, x) + * ------------------- + * 0.5506798633981853 + * 0.23461407150576394 - 4.033186818023279E-18i + * -0.016542951108772352 + * 0.10288019294318276 + 4.033186818023279E-18i + * + * d = convolve(x, x) + * ------------------- + * 0.001211336402308083 - 3.122502256758253E-17i + * -0.005506167987577068 - 5.058885073636224E-17i + * -0.044092969479563274 + 2.1934338938072244E-18i + * 0.10288019294318276 - 3.6147323062478115E-17i + * 0.5494685269958772 + 3.122502256758253E-17i + * 0.240120239493341 + 4.655566391833896E-17i + * 0.02755001837079092 - 2.1934338938072244E-18i + * 4.01805098805014E-17i + * + ***************************************************************************/ + + public static void main(String[] args) { + int n = Integer.parseInt(args[0]); + Complex[] x = new Complex[n]; + + // original data + for (int i = 0; i < n; i++) { + x[i] = new Complex(i, 0); + } + show(x, "x"); + + // FFT of original data + Complex[] y = fft(x); + show(y, "y = fft(x)"); + + // FFT of original data + Complex[] y2 = dft(x); + show(y2, "y2 = dft(x)"); + + // take inverse FFT + Complex[] z = ifft(y); + show(z, "z = ifft(y)"); + + // circular convolution of x with itself + Complex[] c = cconvolve(x, x); + show(c, "c = cconvolve(x, x)"); + + // linear convolution of x with itself + Complex[] d = convolve(x, x); + show(d, "d = convolve(x, x)"); + } +} + +