package com.example.ueberwachungssystem.Detection; | |||||
import static java.lang.Math.sqrt; | |||||
import android.content.Context; | |||||
import android.hardware.Sensor; | |||||
import android.hardware.SensorEvent; | |||||
import android.hardware.SensorEventListener; | |||||
import android.hardware.SensorManager; | |||||
/** | |||||
* Accelerometer inherits some methods from abstract Detector class (more info there) | |||||
* | |||||
* | |||||
* USE FROM MAIN ACTIVITY: | |||||
* | |||||
* Accelerometer beschleunigungssensor = new Accelerometer(this); | |||||
* onCreate: | |||||
* //Accelerometer Setup | |||||
* beschleunigungssensor = new Accelerometer(this, logger, textViewLog); //logger and textview only for debugging necessary | |||||
* beschleunigungssensor.getSensor(); | |||||
* | |||||
* //Starting Detection: | |||||
* beschleunigungssensor.startDetection(); | |||||
* //Stopping Detection: also recommended at onPause to avoid unnecessary battery consumption | |||||
* beschleunigungssensor.stopDetection(); | |||||
* | |||||
* */ | |||||
public class Accelerometer extends Detector implements SensorEventListener { | |||||
public SensorManager sensorManager; | |||||
private static final int sensorType = Sensor.TYPE_LINEAR_ACCELERATION; | |||||
private Sensor accelerometer; | |||||
private Context context; | |||||
boolean alarm = false; | |||||
//Preallocate memory for the data of each axis of the acceleration sensor | |||||
float x; | |||||
float y; | |||||
float z; | |||||
float betrag; //Betrag aller drei Achsen sqrt(x*x + y*y + z*z) | |||||
private DetectionReport detectionReport; | |||||
// In constructor pass Activity, Context and TextView from MainActivity in Accelerometer class | |||||
public Accelerometer(Context context){ | |||||
super(); //von Detektor | |||||
this.context = context; | |||||
} | |||||
public void getSensor(){ | |||||
sensorManager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE); | |||||
if(sensorManager.getSensorList(sensorType).size()==0) { | |||||
accelerometer = null; | |||||
} | |||||
else { | |||||
accelerometer = sensorManager.getSensorList(sensorType).get(0); | |||||
} | |||||
} | |||||
@Override | |||||
public void onSensorChanged(SensorEvent event) { | |||||
try { | |||||
checkAlarm(event); | |||||
} catch (InterruptedException e) { | |||||
throw new RuntimeException(e); | |||||
} | |||||
} | |||||
public void checkAlarm (SensorEvent event) throws InterruptedException { | |||||
x = event.values[0]; | |||||
y = event.values[1]; | |||||
z = event.values[2]; | |||||
betrag = (float) sqrt(x*x + y*y + z*z); | |||||
float threshold = 1.5F; | |||||
if (!alarm) { | |||||
if (betrag > threshold) { | |||||
alarm = true; | |||||
reportViolation("Bewegung", betrag); | |||||
} | |||||
} else { | |||||
if (betrag < threshold) { | |||||
alarm = false; | |||||
} else { | |||||
} | |||||
} | |||||
} | |||||
@Override | |||||
public void onAccuracyChanged(Sensor sensor, int accuracy) { | |||||
} | |||||
@Override | |||||
public void startDetection() { | |||||
// entspricht void start() | |||||
//getSensor(); | |||||
if (accelerometer != null) { | |||||
sensorManager.registerListener(this, accelerometer, SensorManager.SENSOR_DELAY_GAME); | |||||
} | |||||
} | |||||
@Override | |||||
public void stopDetection() { | |||||
// entspricht void stop() | |||||
sensorManager.unregisterListener(this, accelerometer); | |||||
} | |||||
} |
package com.example.ueberwachungssystem.Detection; | |||||
import android.content.Context; | |||||
import android.media.MediaPlayer; | |||||
import android.media.MediaRecorder; | |||||
import android.widget.Toast; | |||||
import java.io.File; | |||||
import java.io.IOException; | |||||
import java.time.LocalDateTime; | |||||
import java.time.format.DateTimeFormatter; | |||||
public class AudioRecorder { | |||||
private final Context context; | |||||
private MediaRecorder mediaRecorder = null; | |||||
private boolean isRecording = false; | |||||
private File outputDir; // Default: in app files directory | |||||
public AudioRecorder (Context context) { | |||||
this.context = context; | |||||
this.outputDir = context.getFilesDir(); | |||||
} | |||||
public void startRecording() { | |||||
// Handle logic | |||||
if (outputDir == null) | |||||
return; | |||||
if (isRecording) | |||||
return; | |||||
isRecording = true; | |||||
// Setup Audio Recorder for output Format: 3GP | |||||
mediaRecorder = new MediaRecorder(); | |||||
mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC); | |||||
mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP); | |||||
mediaRecorder.setOutputFile(outputDir + "/" + generateFileName() + ".3gp"); | |||||
mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB); | |||||
try { | |||||
mediaRecorder.prepare(); | |||||
} catch (IOException e) { | |||||
e.printStackTrace(); | |||||
} | |||||
mediaRecorder.start(); | |||||
} | |||||
public void stopRecording() { | |||||
if (mediaRecorder != null) { | |||||
mediaRecorder.stop(); | |||||
mediaRecorder.reset(); | |||||
mediaRecorder.release(); | |||||
mediaRecorder = null; | |||||
isRecording = false; | |||||
Toast.makeText(context, "audio recording saved", Toast.LENGTH_SHORT).show(); | |||||
} | |||||
} | |||||
public boolean isRecording(){ | |||||
return isRecording; | |||||
} | |||||
public void setOutputDir(File outputDir) { | |||||
this.outputDir = outputDir; | |||||
} | |||||
private String generateFileName(){ | |||||
// Get the current timestamp | |||||
LocalDateTime currentTime = LocalDateTime.now(); | |||||
// Define the format for the timestamp | |||||
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyyMMdd_HHmmss"); | |||||
// Return the timestamp as a string | |||||
return currentTime.format(formatter); | |||||
} | |||||
} |
package com.example.ueberwachungssystem.Detection; | |||||
import android.os.CountDownTimer; | |||||
import androidx.annotation.NonNull; | |||||
import androidx.camera.core.ExperimentalGetImage; | |||||
abstract public class Detector { | |||||
private OnDetectionListener listener; | |||||
private boolean isDetecting = false; | |||||
private boolean extendViolation = false; | |||||
// Countdown parameters | |||||
private final int COUNTDOWN_TIME = 10000; // milliseconds | |||||
private final int COUNTDOWN_POLLING_TIME = 100; // milliseconds | |||||
/** Constructor - takes context of current activity */ | |||||
public Detector() {} | |||||
/** On Detection Listener - runs when violation is reported */ | |||||
public interface OnDetectionListener { | |||||
void onDetection(@NonNull DetectionReport detectionReport); | |||||
} | |||||
public void setOnDetectionListener(@NonNull OnDetectionListener listener) { | |||||
this.listener = listener; | |||||
} | |||||
/** Triggers onDetectionListener - call this to trigger violation/alarm */ | |||||
public void reportViolation(String detectionType, float amplitude) { | |||||
if (listener != null) { | |||||
if (!isDetecting) { | |||||
isDetecting = true; | |||||
DetectionReport detectionReport = new DetectionReport(true, detectionType, amplitude); | |||||
listener.onDetection(detectionReport); | |||||
startDetectionTimer(detectionType, amplitude); | |||||
} else { | |||||
extendViolation = true; | |||||
} | |||||
} else { | |||||
isDetecting = false; | |||||
extendViolation = false; | |||||
} | |||||
} | |||||
private void startDetectionTimer(String detectionType, float amplitude) { | |||||
isDetecting = true; | |||||
new CountDownTimer((long) COUNTDOWN_TIME, COUNTDOWN_POLLING_TIME) { | |||||
@Override | |||||
public void onTick(long millisUntilFinished) { | |||||
if (extendViolation) { | |||||
extendViolation = false; | |||||
startDetectionTimer(detectionType, amplitude); | |||||
this.cancel(); | |||||
} | |||||
} | |||||
@Override | |||||
public void onFinish() { | |||||
isDetecting = false; | |||||
DetectionReport detectionReport = new DetectionReport(false, detectionType, amplitude); | |||||
listener.onDetection(detectionReport); | |||||
} | |||||
}.start(); | |||||
} | |||||
public void extendViolation(){ | |||||
this.extendViolation = true; | |||||
} | |||||
/** Starts Detection (abstract method: needs to be overridden in child class) */ | |||||
public abstract void startDetection(); | |||||
/** Stops Detection (abstract method: needs to be overridden in child class) */ | |||||
public abstract void stopDetection(); | |||||
} |
package com.example.ueberwachungssystem.Detection; | |||||
import android.graphics.Bitmap; | |||||
import android.media.Image; | |||||
import android.widget.ImageView; | |||||
import androidx.annotation.NonNull; | |||||
import androidx.camera.core.ExperimentalGetImage; | |||||
import androidx.camera.core.ImageProxy; | |||||
import org.opencv.android.Utils; | |||||
import org.opencv.core.Core; | |||||
import org.opencv.core.CvType; | |||||
import org.opencv.core.Mat; | |||||
import org.opencv.core.MatOfPoint; | |||||
import org.opencv.core.Scalar; | |||||
import org.opencv.core.Size; | |||||
import org.opencv.imgproc.Imgproc; | |||||
import java.nio.ByteBuffer; | |||||
import java.util.ArrayList; | |||||
import java.util.Collections; | |||||
import java.util.List; | |||||
@ExperimentalGetImage | |||||
public class OpenCVHelper { | |||||
/** OpenCV helper methods **/ | |||||
public static Mat addGaussianBlur(Mat inputMat, Size kernelSize){ | |||||
Mat outputMat = new Mat(); | |||||
Imgproc.GaussianBlur(inputMat, outputMat, kernelSize, 0); | |||||
return outputMat; | |||||
} | |||||
public static Mat addBlur(Mat inputMat, Size kernelSize){ | |||||
Mat outputMat = new Mat(); | |||||
Imgproc.blur(inputMat, outputMat, kernelSize); | |||||
return outputMat; | |||||
} | |||||
public static Mat extractYChannel(@NonNull ImageProxy imgProxy) { | |||||
Image img = imgProxy.getImage(); | |||||
assert img != null; | |||||
ByteBuffer yBuffer = img.getPlanes()[0].getBuffer(); | |||||
byte[] yData = new byte[yBuffer.remaining()]; | |||||
yBuffer.get(yData); | |||||
Mat yMat = new Mat(img.getHeight(), img.getWidth(), CvType.CV_8UC1); | |||||
yMat.put(0, 0, yData); | |||||
return yMat; | |||||
} | |||||
public static Mat thresholdPixels(Mat inputMat, Mat previousImage, int threshold){ | |||||
Mat diffImage = new Mat(); | |||||
Core.absdiff(inputMat, previousImage, diffImage); | |||||
Mat binaryMat = new Mat(); | |||||
Imgproc.threshold(diffImage, binaryMat, threshold, 255, Imgproc.THRESH_BINARY); | |||||
return binaryMat; | |||||
} | |||||
public static Mat thresholdContourArea(Mat inputMat, float areaThreshold){ | |||||
List<MatOfPoint> contours = new ArrayList<>(); | |||||
Mat hierarchy = new Mat(); | |||||
Imgproc.findContours(inputMat, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); | |||||
Mat outputMat = new Mat(inputMat.size(), inputMat.type(), new Scalar(0)); | |||||
// Iterate over the contours and draw only the larger contours on the outputMat | |||||
for (MatOfPoint contour : contours) { | |||||
double contourArea = Imgproc.contourArea(contour); | |||||
if (contourArea > areaThreshold) { | |||||
Imgproc.drawContours(outputMat, Collections.singletonList(contour), 0, new Scalar(255), -1); | |||||
} | |||||
} | |||||
// Apply the outputMat as a mask to the dilatedImage | |||||
Mat maskedImage = new Mat(); | |||||
inputMat.copyTo(maskedImage, outputMat); | |||||
return outputMat; | |||||
} | |||||
public static Mat dilateBinaryMat(Mat inputMat, Size kernelSize){ | |||||
Mat dilatedMat = new Mat(); | |||||
Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_ELLIPSE, kernelSize); | |||||
Imgproc.dilate(inputMat, dilatedMat, kernel); | |||||
return dilatedMat; | |||||
} | |||||
public static int countNonZeroPixels(Mat inputImage) { | |||||
if (inputImage != null) | |||||
return Core.countNonZero(inputImage); | |||||
else | |||||
return 0; | |||||
} | |||||
public static void debugMat(Mat mat, ImageView imageView) { | |||||
if (imageView == null || mat == null) | |||||
return; | |||||
Bitmap bitmap = Bitmap.createBitmap(mat.cols(), mat.rows(), Bitmap.Config.ARGB_8888); | |||||
Utils.matToBitmap(mat, bitmap); | |||||
// Display the bitmap in an ImageView | |||||
imageView.setImageBitmap(bitmap); | |||||
} | |||||
} |
package com.example.ueberwachungssystem.Detection.Signalverarbeitung; | |||||
import java.util.Objects; | |||||
public class Complex { | |||||
private final double re; // the real part | |||||
private final double im; // the imaginary part | |||||
// create a new object with the given real and imaginary parts | |||||
public Complex(double real, double imag) { | |||||
re = real; | |||||
im = imag; | |||||
} | |||||
// return a string representation of the invoking com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object | |||||
public String toString() { | |||||
if (im == 0) return re + ""; | |||||
if (re == 0) return im + "i"; | |||||
if (im < 0) return re + " - " + (-im) + "i"; | |||||
return re + " + " + im + "i"; | |||||
} | |||||
// return abs/modulus/magnitude | |||||
public double abs() { | |||||
return Math.hypot(re, im); | |||||
} | |||||
// return angle/phase/argument, normalized to be between -pi and pi | |||||
public double phase() { | |||||
return Math.atan2(im, re); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this + b) | |||||
public Complex plus(Complex b) { | |||||
Complex a = this; // invoking object | |||||
double real = a.re + b.re; | |||||
double imag = a.im + b.im; | |||||
return new Complex(real, imag); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this - b) | |||||
public Complex minus(Complex b) { | |||||
Complex a = this; | |||||
double real = a.re - b.re; | |||||
double imag = a.im - b.im; | |||||
return new Complex(real, imag); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this * b) | |||||
public Complex times(Complex b) { | |||||
Complex a = this; | |||||
double real = a.re * b.re - a.im * b.im; | |||||
double imag = a.re * b.im + a.im * b.re; | |||||
return new Complex(real, imag); | |||||
} | |||||
// return a new object whose value is (this * alpha) | |||||
public Complex scale(double alpha) { | |||||
return new Complex(alpha * re, alpha * im); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the conjugate of this | |||||
public Complex conjugate() { | |||||
return new Complex(re, -im); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the reciprocal of this | |||||
public Complex reciprocal() { | |||||
double scale = re * re + im * im; | |||||
return new Complex(re / scale, -im / scale); | |||||
} | |||||
// return the real or imaginary part | |||||
public double re() { | |||||
return re; | |||||
} | |||||
public double im() { | |||||
return im; | |||||
} | |||||
// return a / b | |||||
public Complex divides(Complex b) { | |||||
Complex a = this; | |||||
return a.times(b.reciprocal()); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex exponential of this | |||||
public Complex exp() { | |||||
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im)); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex sine of this | |||||
public Complex sin() { | |||||
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im)); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex cosine of this | |||||
public Complex cos() { | |||||
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im)); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex tangent of this | |||||
public Complex tan() { | |||||
return sin().divides(cos()); | |||||
} | |||||
// a static version of plus | |||||
public static Complex plus(Complex a, Complex b) { | |||||
double real = a.re + b.re; | |||||
double imag = a.im + b.im; | |||||
Complex sum = new Complex(real, imag); | |||||
return sum; | |||||
} | |||||
// See Section 3.3. | |||||
public boolean equals(Object x) { | |||||
if (x == null) return false; | |||||
if (this.getClass() != x.getClass()) return false; | |||||
Complex that = (Complex) x; | |||||
return (this.re == that.re) && (this.im == that.im); | |||||
} | |||||
// See Section 3.3. | |||||
public int hashCode() { | |||||
return Objects.hash(re, im); | |||||
} | |||||
// sample client for testing | |||||
public static void main(String[] args) { | |||||
Complex a = new Complex(5.0, 6.0); | |||||
Complex b = new Complex(-3.0, 4.0); | |||||
System.out.println("a = " + a); | |||||
System.out.println("b = " + b); | |||||
System.out.println("Re(a) = " + a.re()); | |||||
System.out.println("Im(a) = " + a.im()); | |||||
System.out.println("b + a = " + b.plus(a)); | |||||
System.out.println("a - b = " + a.minus(b)); | |||||
System.out.println("a * b = " + a.times(b)); | |||||
System.out.println("b * a = " + b.times(a)); | |||||
System.out.println("a / b = " + a.divides(b)); | |||||
System.out.println("(a / b) * b = " + a.divides(b).times(b)); | |||||
System.out.println("conj(a) = " + a.conjugate()); | |||||
System.out.println("|a| = " + a.abs()); | |||||
System.out.println("tan(a) = " + a.tan()); | |||||
} | |||||
} |
package com.example.ueberwachungssystem.Detection.Signalverarbeitung; | |||||
// Source: https://introcs.cs.princeton.edu/java/97data/FFT.java.html | |||||
/****************************************************************************** | |||||
* Compilation: javac FFT.java | |||||
* Execution: java FFT n | |||||
* Dependencies: com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex.java | |||||
* | |||||
* Compute the FFT and inverse FFT of a length n complex sequence | |||||
* using the radix 2 Cooley-Tukey algorithm. | |||||
* Bare bones implementation that runs in O(n log n) time and O(n) | |||||
* space. Our goal is to optimize the clarity of the code, rather | |||||
* than performance. | |||||
* | |||||
* This implementation uses the primitive root of unity w = e^(-2 pi i / n). | |||||
* Some resources use w = e^(2 pi i / n). | |||||
* | |||||
* Reference: https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII.pdf | |||||
* | |||||
* Limitations | |||||
* ----------- | |||||
* - assumes n is a power of 2 | |||||
* | |||||
* - not the most memory efficient algorithm (because it uses | |||||
* an object type for representing complex numbers and because | |||||
* it re-allocates memory for the subarray, instead of doing | |||||
* in-place or reusing a single temporary array) | |||||
* | |||||
* For an in-place radix 2 Cooley-Tukey FFT, see | |||||
* https://introcs.cs.princeton.edu/java/97data/InplaceFFT.java.html | |||||
* | |||||
******************************************************************************/ | |||||
public class FFT { | |||||
// compute the FFT of x[], assuming its length n is a power of 2 | |||||
public static Complex[] fft(Complex[] x) { | |||||
int n = x.length; | |||||
// base case | |||||
if (n == 1) return new Complex[]{x[0]}; | |||||
// radix 2 Cooley-Tukey FFT | |||||
if (n % 2 != 0) { | |||||
throw new IllegalArgumentException("n is not a power of 2"); | |||||
} | |||||
// compute FFT of even terms | |||||
Complex[] even = new Complex[n / 2]; | |||||
for (int k = 0; k < n / 2; k++) { | |||||
even[k] = x[2 * k]; | |||||
} | |||||
Complex[] evenFFT = fft(even); | |||||
// compute FFT of odd terms | |||||
Complex[] odd = even; // reuse the array (to avoid n log n space) | |||||
for (int k = 0; k < n / 2; k++) { | |||||
odd[k] = x[2 * k + 1]; | |||||
} | |||||
Complex[] oddFFT = fft(odd); | |||||
// combine | |||||
Complex[] y = new Complex[n]; | |||||
for (int k = 0; k < n / 2; k++) { | |||||
double kth = -2 * k * Math.PI / n; | |||||
Complex wk = new Complex(Math.cos(kth), Math.sin(kth)); | |||||
y[k] = evenFFT[k].plus(wk.times(oddFFT[k])); | |||||
y[k + n / 2] = evenFFT[k].minus(wk.times(oddFFT[k])); | |||||
} | |||||
return y; | |||||
} | |||||
// compute the inverse FFT of x[], assuming its length n is a power of 2 | |||||
public static Complex[] ifft(Complex[] x) { | |||||
int n = x.length; | |||||
Complex[] y = new Complex[n]; | |||||
// take conjugate | |||||
for (int i = 0; i < n; i++) { | |||||
y[i] = x[i].conjugate(); | |||||
} | |||||
// compute forward FFT | |||||
y = fft(y); | |||||
// take conjugate again | |||||
for (int i = 0; i < n; i++) { | |||||
y[i] = y[i].conjugate(); | |||||
} | |||||
// divide by n | |||||
for (int i = 0; i < n; i++) { | |||||
y[i] = y[i].scale(1.0 / n); | |||||
} | |||||
return y; | |||||
} | |||||
// compute the circular convolution of x and y | |||||
public static Complex[] cconvolve(Complex[] x, Complex[] y) { | |||||
// should probably pad x and y with 0s so that they have same length | |||||
// and are powers of 2 | |||||
if (x.length != y.length) { | |||||
throw new IllegalArgumentException("Dimensions don't agree"); | |||||
} | |||||
int n = x.length; | |||||
// compute FFT of each sequence | |||||
Complex[] a = fft(x); | |||||
Complex[] b = fft(y); | |||||
// point-wise multiply | |||||
Complex[] c = new Complex[n]; | |||||
for (int i = 0; i < n; i++) { | |||||
c[i] = a[i].times(b[i]); | |||||
} | |||||
// compute inverse FFT | |||||
return ifft(c); | |||||
} | |||||
// compute the linear convolution of x and y | |||||
public static Complex[] convolve(Complex[] x, Complex[] y) { | |||||
Complex ZERO = new Complex(0, 0); | |||||
Complex[] a = new Complex[2 * x.length]; | |||||
for (int i = 0; i < x.length; i++) a[i] = x[i]; | |||||
for (int i = x.length; i < 2 * x.length; i++) a[i] = ZERO; | |||||
Complex[] b = new Complex[2 * y.length]; | |||||
for (int i = 0; i < y.length; i++) b[i] = y[i]; | |||||
for (int i = y.length; i < 2 * y.length; i++) b[i] = ZERO; | |||||
return cconvolve(a, b); | |||||
} | |||||
// compute the DFT of x[] via brute force (n^2 time) | |||||
public static Complex[] dft(Complex[] x) { | |||||
int n = x.length; | |||||
Complex ZERO = new Complex(0, 0); | |||||
Complex[] y = new Complex[n]; | |||||
for (int k = 0; k < n; k++) { | |||||
y[k] = ZERO; | |||||
for (int j = 0; j < n; j++) { | |||||
int power = (k * j) % n; | |||||
double kth = -2 * power * Math.PI / n; | |||||
Complex wkj = new Complex(Math.cos(kth), Math.sin(kth)); | |||||
y[k] = y[k].plus(x[j].times(wkj)); | |||||
} | |||||
} | |||||
return y; | |||||
} | |||||
// display an array of com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex numbers to standard output | |||||
public static void show(Complex[] x, String title) { | |||||
System.out.println(title); | |||||
System.out.println("-------------------"); | |||||
for (int i = 0; i < x.length; i++) { | |||||
System.out.println(x[i]); | |||||
} | |||||
System.out.println(); | |||||
} | |||||
/*************************************************************************** | |||||
* Test client and sample execution | |||||
* | |||||
* % java FFT 4 | |||||
* x | |||||
* ------------------- | |||||
* -0.03480425839330703 | |||||
* 0.07910192950176387 | |||||
* 0.7233322451735928 | |||||
* 0.1659819820667019 | |||||
* | |||||
* y = fft(x) | |||||
* ------------------- | |||||
* 0.9336118983487516 | |||||
* -0.7581365035668999 + 0.08688005256493803i | |||||
* 0.44344407521182005 | |||||
* -0.7581365035668999 - 0.08688005256493803i | |||||
* | |||||
* z = ifft(y) | |||||
* ------------------- | |||||
* -0.03480425839330703 | |||||
* 0.07910192950176387 + 2.6599344570851287E-18i | |||||
* 0.7233322451735928 | |||||
* 0.1659819820667019 - 2.6599344570851287E-18i | |||||
* | |||||
* c = cconvolve(x, x) | |||||
* ------------------- | |||||
* 0.5506798633981853 | |||||
* 0.23461407150576394 - 4.033186818023279E-18i | |||||
* -0.016542951108772352 | |||||
* 0.10288019294318276 + 4.033186818023279E-18i | |||||
* | |||||
* d = convolve(x, x) | |||||
* ------------------- | |||||
* 0.001211336402308083 - 3.122502256758253E-17i | |||||
* -0.005506167987577068 - 5.058885073636224E-17i | |||||
* -0.044092969479563274 + 2.1934338938072244E-18i | |||||
* 0.10288019294318276 - 3.6147323062478115E-17i | |||||
* 0.5494685269958772 + 3.122502256758253E-17i | |||||
* 0.240120239493341 + 4.655566391833896E-17i | |||||
* 0.02755001837079092 - 2.1934338938072244E-18i | |||||
* 4.01805098805014E-17i | |||||
* | |||||
***************************************************************************/ | |||||
public static void main(String[] args) { | |||||
int n = Integer.parseInt(args[0]); | |||||
Complex[] x = new Complex[n]; | |||||
// original data | |||||
for (int i = 0; i < n; i++) { | |||||
x[i] = new Complex(i, 0); | |||||
} | |||||
show(x, "x"); | |||||
// FFT of original data | |||||
Complex[] y = fft(x); | |||||
show(y, "y = fft(x)"); | |||||
// FFT of original data | |||||
Complex[] y2 = dft(x); | |||||
show(y2, "y2 = dft(x)"); | |||||
// take inverse FFT | |||||
Complex[] z = ifft(y); | |||||
show(z, "z = ifft(y)"); | |||||
// circular convolution of x with itself | |||||
Complex[] c = cconvolve(x, x); | |||||
show(c, "c = cconvolve(x, x)"); | |||||
// linear convolution of x with itself | |||||
Complex[] d = convolve(x, x); | |||||
show(d, "d = convolve(x, x)"); | |||||
} | |||||
} | |||||