@@ -0,0 +1,3 @@ | |||
Sensor als Service einrichten, der aus Activity heraus gestartet werden kann. | |||
Stichwort: Intent | |||
Siehe Skript Teil 1 |
@@ -0,0 +1,108 @@ | |||
package com.example.ueberwachungssystem.Detection; | |||
import static java.lang.Math.sqrt; | |||
import android.content.Context; | |||
import android.hardware.Sensor; | |||
import android.hardware.SensorEvent; | |||
import android.hardware.SensorEventListener; | |||
import android.hardware.SensorManager; | |||
/** | |||
* Accelerometer inherits some methods from abstract Detector class (more info there) | |||
* | |||
* | |||
* USE FROM MAIN ACTIVITY: | |||
* | |||
* Accelerometer beschleunigungssensor = new Accelerometer(this); | |||
* onCreate: | |||
* //Accelerometer Setup | |||
* beschleunigungssensor = new Accelerometer(this, logger, textViewLog); //logger and textview only for debugging necessary | |||
* beschleunigungssensor.getSensor(); | |||
* | |||
* //Starting Detection: | |||
* beschleunigungssensor.startDetection(); | |||
* //Stopping Detection: also recommended at onPause to avoid unnecessary battery consumption | |||
* beschleunigungssensor.stopDetection(); | |||
* | |||
* */ | |||
public class Accelerometer extends Detector implements SensorEventListener { | |||
public SensorManager sensorManager; | |||
private static final int sensorType = Sensor.TYPE_LINEAR_ACCELERATION; | |||
private Sensor accelerometer; | |||
private Context context; | |||
boolean alarm = false; | |||
//Preallocate memory for the data of each axis of the acceleration sensor | |||
float x; | |||
float y; | |||
float z; | |||
float betrag; //Betrag aller drei Achsen sqrt(x*x + y*y + z*z) | |||
private DetectionReport detectionReport; | |||
// In constructor pass Activity, Context and TextView from MainActivity in Accelerometer class | |||
public Accelerometer(Context context){ | |||
super(); //von Detektor | |||
this.context = context; | |||
} | |||
public void getSensor(){ | |||
sensorManager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE); | |||
if(sensorManager.getSensorList(sensorType).size()==0) { | |||
accelerometer = null; | |||
} | |||
else { | |||
accelerometer = sensorManager.getSensorList(sensorType).get(0); | |||
} | |||
} | |||
@Override | |||
public void onSensorChanged(SensorEvent event) { | |||
try { | |||
checkAlarm(event); | |||
} catch (InterruptedException e) { | |||
throw new RuntimeException(e); | |||
} | |||
} | |||
public void checkAlarm (SensorEvent event) throws InterruptedException { | |||
x = event.values[0]; | |||
y = event.values[1]; | |||
z = event.values[2]; | |||
betrag = (float) sqrt(x*x + y*y + z*z); | |||
float threshold = 1.5F; | |||
if (!alarm) { | |||
if (betrag > threshold) { | |||
alarm = true; | |||
reportViolation("Bewegung", betrag); | |||
} | |||
} else { | |||
if (betrag < threshold) { | |||
alarm = false; | |||
} else { | |||
} | |||
} | |||
} | |||
@Override | |||
public void onAccuracyChanged(Sensor sensor, int accuracy) { | |||
} | |||
@Override | |||
public void startDetection() { | |||
// entspricht void start() | |||
//getSensor(); | |||
if (accelerometer != null) { | |||
sensorManager.registerListener(this, accelerometer, SensorManager.SENSOR_DELAY_GAME); | |||
} | |||
} | |||
@Override | |||
public void stopDetection() { | |||
// entspricht void stop() | |||
sensorManager.unregisterListener(this, accelerometer); | |||
} | |||
} |
@@ -0,0 +1,382 @@ | |||
package com.example.ueberwachungssystem.Detection; | |||
import static java.lang.Math.*; | |||
import android.Manifest; | |||
import android.annotation.SuppressLint; | |||
import android.app.Activity; | |||
import android.content.Context; | |||
import android.content.pm.PackageManager; | |||
import android.media.AudioFormat; | |||
import android.media.AudioRecord; | |||
import android.media.MediaRecorder; | |||
import android.os.AsyncTask; | |||
import android.util.Log; | |||
import androidx.core.app.ActivityCompat; | |||
import androidx.core.content.ContextCompat; | |||
import com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex; | |||
import com.example.ueberwachungssystem.Detection.Signalverarbeitung.FFT; | |||
import com.example.ueberwachungssystem.Detection.DetectionReport; | |||
import com.example.ueberwachungssystem.Detection.Detector; | |||
public class MicrophoneDetector extends Detector { | |||
/** | |||
* Constructor - takes context of current activity | |||
* | |||
* @param context | |||
*/ | |||
private static final int RECHTEANFORDERUNG_MIKROFON = 1; | |||
private AufnahmeTask aufnahmeTask; | |||
public boolean armed = false; | |||
public int Schwellwert_Alarm = 100; | |||
private Context context; | |||
public MicrophoneDetector(Context context) { | |||
super(); | |||
this.context = context; | |||
} | |||
@Override | |||
public void startDetection() { | |||
aufnahmeTask = new AufnahmeTask(); | |||
aufnahmeTask.execute(); | |||
} | |||
@Override | |||
public void stopDetection() { | |||
if (aufnahmeTask != null) { | |||
aufnahmeTask.cancel(true); | |||
} | |||
} | |||
class AufnahmeTask extends AsyncTask<Long, Verarbeitungsergebnis, Void> { | |||
private AudioRecord recorder; | |||
private final int sampleRateInHz = 44100; | |||
private final int channelConfig = AudioFormat.CHANNEL_IN_MONO; | |||
private final int audioFormat = AudioFormat.ENCODING_PCM_16BIT; | |||
private int minPufferGroesseInBytes; | |||
private int pufferGroesseInBytes; | |||
private RingPuffer ringPuffer = new RingPuffer(10); | |||
private float kalibierWert; | |||
private com.example.ueberwachungssystem.Detection.DetectionReport detectionReport; | |||
@SuppressLint("MissingPermission") | |||
AufnahmeTask() { | |||
minPufferGroesseInBytes = AudioRecord.getMinBufferSize(sampleRateInHz, channelConfig, audioFormat); | |||
pufferGroesseInBytes = minPufferGroesseInBytes * 2; | |||
try { | |||
recorder = new AudioRecord(MediaRecorder.AudioSource.MIC, sampleRateInHz, channelConfig, audioFormat, pufferGroesseInBytes); | |||
} catch (Exception e) { | |||
e.printStackTrace(); | |||
} | |||
Log.d("0","Puffergroeße: "+ minPufferGroesseInBytes + " " + pufferGroesseInBytes); | |||
Log.d("0","Recorder (SR, CH): "+ recorder.getSampleRate() + " " + recorder.getChannelCount()); | |||
int anzahlBytesProAbtastwert; | |||
String s; | |||
switch (recorder.getAudioFormat()) { | |||
case AudioFormat.ENCODING_PCM_8BIT: | |||
s = "8 Bit PCM "; | |||
anzahlBytesProAbtastwert = 1; | |||
break; | |||
case AudioFormat.ENCODING_PCM_16BIT: | |||
s = "16 Bit PCM"; | |||
anzahlBytesProAbtastwert = 2; | |||
break; | |||
case AudioFormat.ENCODING_PCM_FLOAT: | |||
s = "Float PCM"; | |||
anzahlBytesProAbtastwert = 4; | |||
break; | |||
default: | |||
throw new IllegalArgumentException(); | |||
} | |||
switch (recorder.getChannelConfiguration()) { | |||
case AudioFormat.CHANNEL_IN_MONO: | |||
s = "Mono"; | |||
break; | |||
case AudioFormat.CHANNEL_IN_STEREO: | |||
s = "Stereo"; | |||
anzahlBytesProAbtastwert *= 2; | |||
break; | |||
case AudioFormat.CHANNEL_INVALID: | |||
s = "ungültig"; | |||
break; | |||
default: | |||
throw new IllegalArgumentException(); | |||
} | |||
Log.d("0","Konfiguration: "+ s); | |||
int pufferGroesseInAnzahlAbtastwerten = pufferGroesseInBytes / anzahlBytesProAbtastwert; | |||
} | |||
@Override | |||
protected Void doInBackground(Long... params) { | |||
recorder.startRecording(); | |||
short[] puffer = new short[pufferGroesseInBytes / 2]; | |||
long lastTime = System.currentTimeMillis(); | |||
float verarbeitungsrate = 0; | |||
final int maxZaehlerZeitMessung = 10; | |||
int zaehlerZeitMessung = 0; | |||
int anzahlVerarbeitet = 0; | |||
GleitenderMittelwert gleitenderMittelwert = new GleitenderMittelwert(0.3f); | |||
//Kalibrierung | |||
try { | |||
Thread.sleep(3000); // Time to lay down the phone | |||
} catch (InterruptedException e) { | |||
e.printStackTrace(); | |||
} | |||
int i = 0; | |||
for (i = 0; i < 20; i++) { | |||
int n = recorder.read(puffer, 0, puffer.length); | |||
Verarbeitungsergebnis kalibrierErgebnis = verarbeiten(puffer, n); | |||
kalibierWert += kalibrierErgebnis.maxAmp; | |||
try { | |||
Thread.sleep(50); | |||
} catch (InterruptedException e) { | |||
e.printStackTrace(); | |||
} | |||
} | |||
kalibierWert = kalibierWert/i; | |||
// __Part of FFT__ | |||
// Complex[] zeitSignal = new Complex[puffer.length]; | |||
// for (int j = 0; j < puffer.length; j++) { | |||
// zeitSignal[j] = new Complex(puffer[j], 0); | |||
// } | |||
// Complex[] spektrum = FFT.fft(zeitSignal); | |||
// double[] spektrum = calculateFFT(puffer); | |||
// DataPoint AddPoint; | |||
// LineGraphSeries<DataPoint> series = new LineGraphSeries<DataPoint>(new DataPoint[]{}); | |||
// for (i = 0; i < spektrum.length; i++) { | |||
// AddPoint = new DataPoint(i, spektrum[i]); | |||
// series.appendData(AddPoint, true, spektrum.length); | |||
// } | |||
// graph.addSeries(series); | |||
for (; ; ) { | |||
if (aufnahmeTask.isCancelled()) { | |||
break; | |||
} else { | |||
int n = recorder.read(puffer, 0, puffer.length); | |||
Verarbeitungsergebnis ergebnis = verarbeiten(puffer, n); | |||
anzahlVerarbeitet += n; | |||
// __Part of FFT__ | |||
// spektrum = calculateFFT(puffer); | |||
// LineGraphSeries<DataPoint> newseries = new LineGraphSeries<DataPoint>(new DataPoint[]{}); | |||
// for (i = 0; i < spektrum.length; i++) { | |||
// AddPoint = new DataPoint(i, spektrum[i]); | |||
// newseries.appendData(AddPoint, true, spektrum.length); | |||
// } | |||
zaehlerZeitMessung++; | |||
if (zaehlerZeitMessung == maxZaehlerZeitMessung) { | |||
long time = System.currentTimeMillis(); | |||
long deltaTime = time - lastTime; | |||
verarbeitungsrate = 1000.0f * anzahlVerarbeitet / deltaTime; | |||
verarbeitungsrate = gleitenderMittelwert.mittel(verarbeitungsrate); | |||
zaehlerZeitMessung = 0; | |||
anzahlVerarbeitet = 0; | |||
lastTime = time; | |||
} | |||
ergebnis.verarbeitungsrate = (int) verarbeitungsrate; | |||
publishProgress(ergebnis); | |||
try { | |||
Thread.sleep(10); | |||
} catch (InterruptedException e) { | |||
e.printStackTrace(); | |||
} | |||
} | |||
} | |||
recorder.release(); | |||
return null; | |||
} | |||
private Verarbeitungsergebnis verarbeiten(short[] daten, int n) { | |||
String status; | |||
short maxAmp = -1; | |||
if (n == AudioRecord.ERROR_INVALID_OPERATION) { | |||
status = "ERROR_INVALID_OPERATION"; | |||
} else if (n == AudioRecord.ERROR_BAD_VALUE) { | |||
status = "ERROR_BAD_VALUE"; | |||
} else { | |||
status = "OK"; | |||
short max = 0; | |||
for (int i = 0; i < n; i++) { | |||
if (daten[i] > max) { | |||
max = daten[i]; | |||
} | |||
} | |||
ringPuffer.hinzufuegen(max); | |||
maxAmp = ringPuffer.maximum(); | |||
if (maxAmp <= Schwellwert_Alarm+kalibierWert) { | |||
armed = true; | |||
} | |||
} | |||
return new Verarbeitungsergebnis(status, maxAmp, 0); | |||
} | |||
@Override | |||
protected void onProgressUpdate(Verarbeitungsergebnis... progress) { | |||
super.onProgressUpdate(progress); | |||
float maxAmpPrint = round(20*log10(abs(progress[0].maxAmp/1.0))); | |||
float kalibierWertPrint = round(20*log10(abs(kalibierWert))); | |||
Log.d("0","VR, Max, Kal:" + progress[0].verarbeitungsrate + ", " + maxAmpPrint | |||
+ " dB, " + kalibierWertPrint + " dB"); | |||
if (progress[0].maxAmp >= Schwellwert_Alarm+kalibierWert && armed == true) { | |||
armed = false; | |||
detectionReport = new DetectionReport(true, "Audio", maxAmpPrint); | |||
reportViolation("Audio", maxAmpPrint); | |||
Log.d("1",detectionReport.toString()); | |||
} | |||
} | |||
} | |||
private double[] calculateFFT(short[] zeitsignal) | |||
{ | |||
byte signal[] = new byte[zeitsignal.length]; | |||
// loops through all the values of a Short | |||
for (int i = 0; i < zeitsignal.length-1; i++) { | |||
signal[i] = (byte) (zeitsignal[i]); | |||
signal[i+1] = (byte) (zeitsignal[i] >> 8); | |||
} | |||
final int mNumberOfFFTPoints =1024; | |||
double temp; | |||
Complex[] y; | |||
Complex[] complexSignal = new Complex[mNumberOfFFTPoints]; | |||
double[] absSignal = new double[mNumberOfFFTPoints/2]; | |||
for(int i = 0; i < mNumberOfFFTPoints; i++){ | |||
temp = (double)((signal[2*i] & 0xFF) | (signal[2*i+1] << 8)) / 32768.0F; | |||
complexSignal[i] = new Complex(temp,0.0); | |||
} | |||
y = FFT.fft(complexSignal); | |||
for(int i = 0; i < (mNumberOfFFTPoints/2); i++) | |||
{ | |||
absSignal[i] = y[i].abs(); | |||
} | |||
return absSignal; | |||
} | |||
class Verarbeitungsergebnis { | |||
String status; | |||
short maxAmp; | |||
int verarbeitungsrate; | |||
Verarbeitungsergebnis(String status, short maxAmp, int verarbeitungsrate) { | |||
this.status = status; | |||
this.maxAmp = maxAmp; | |||
this.verarbeitungsrate = verarbeitungsrate; | |||
} | |||
} | |||
class RingPuffer { | |||
private short[] puffer; | |||
private final int laenge; | |||
private int anzahlEnthaltenerDaten; | |||
private int position; | |||
public RingPuffer(int n) { | |||
laenge = n; | |||
anzahlEnthaltenerDaten = 0; | |||
position = 0; | |||
puffer = new short[laenge]; | |||
} | |||
public void hinzufuegen(short wert) { | |||
puffer[position] = wert; | |||
position++; | |||
if (position >= laenge) { | |||
position = 0; | |||
} | |||
if (anzahlEnthaltenerDaten < laenge) { | |||
anzahlEnthaltenerDaten++; | |||
} | |||
} | |||
public void hinzufuegen(short[] daten) { | |||
for (short d : daten) { | |||
puffer[position] = d; | |||
position++; | |||
if (position >= laenge) { | |||
position = 0; | |||
} | |||
} | |||
if (anzahlEnthaltenerDaten < laenge) { | |||
anzahlEnthaltenerDaten += daten.length; | |||
if (anzahlEnthaltenerDaten >= laenge) { | |||
anzahlEnthaltenerDaten = laenge; | |||
} | |||
} | |||
} | |||
public short maximum() { | |||
short max = 0; | |||
for (int i = 0; i < anzahlEnthaltenerDaten; i++) { | |||
if (puffer[i] > max) { | |||
max = puffer[i]; | |||
} | |||
} | |||
return max; | |||
} | |||
public float mittelwert() { | |||
float summe = 0; | |||
for (int i = 0; i < anzahlEnthaltenerDaten; i++) { | |||
summe += puffer[i]; | |||
} | |||
return summe / anzahlEnthaltenerDaten; | |||
} | |||
} | |||
class GleitenderMittelwert { | |||
private final float wichtungNeuerWert; | |||
private final float wichtungAlterWert; | |||
private float mittelwert = 0; | |||
private boolean istMittelwertGesetzt = false; | |||
GleitenderMittelwert(float wichtungNeuerWert) { | |||
this.wichtungNeuerWert = wichtungNeuerWert; | |||
this.wichtungAlterWert = 1 - this.wichtungNeuerWert; | |||
} | |||
float MittelwertPuffer(short[] puffer) { | |||
for (int i = 0; i < puffer.length; i++) { | |||
mittelwert = Math.abs(puffer[i]); | |||
} | |||
mittelwert = mittelwert/puffer.length; | |||
return mittelwert; | |||
} | |||
float mittel(float wert) { | |||
if (istMittelwertGesetzt) { | |||
mittelwert = wert * wichtungNeuerWert + mittelwert * wichtungAlterWert; | |||
} else { | |||
mittelwert = wert; | |||
istMittelwertGesetzt = true; | |||
} | |||
return mittelwert; | |||
} | |||
} | |||
} |
@@ -0,0 +1,148 @@ | |||
package com.example.ueberwachungssystem.Detection.Signalverarbeitung; | |||
import java.util.Objects; | |||
public class Complex { | |||
private final double re; // the real part | |||
private final double im; // the imaginary part | |||
// create a new object with the given real and imaginary parts | |||
public Complex(double real, double imag) { | |||
re = real; | |||
im = imag; | |||
} | |||
// return a string representation of the invoking com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object | |||
public String toString() { | |||
if (im == 0) return re + ""; | |||
if (re == 0) return im + "i"; | |||
if (im < 0) return re + " - " + (-im) + "i"; | |||
return re + " + " + im + "i"; | |||
} | |||
// return abs/modulus/magnitude | |||
public double abs() { | |||
return Math.hypot(re, im); | |||
} | |||
// return angle/phase/argument, normalized to be between -pi and pi | |||
public double phase() { | |||
return Math.atan2(im, re); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this + b) | |||
public Complex plus(Complex b) { | |||
Complex a = this; // invoking object | |||
double real = a.re + b.re; | |||
double imag = a.im + b.im; | |||
return new Complex(real, imag); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this - b) | |||
public Complex minus(Complex b) { | |||
Complex a = this; | |||
double real = a.re - b.re; | |||
double imag = a.im - b.im; | |||
return new Complex(real, imag); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this * b) | |||
public Complex times(Complex b) { | |||
Complex a = this; | |||
double real = a.re * b.re - a.im * b.im; | |||
double imag = a.re * b.im + a.im * b.re; | |||
return new Complex(real, imag); | |||
} | |||
// return a new object whose value is (this * alpha) | |||
public Complex scale(double alpha) { | |||
return new Complex(alpha * re, alpha * im); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the conjugate of this | |||
public Complex conjugate() { | |||
return new Complex(re, -im); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the reciprocal of this | |||
public Complex reciprocal() { | |||
double scale = re * re + im * im; | |||
return new Complex(re / scale, -im / scale); | |||
} | |||
// return the real or imaginary part | |||
public double re() { | |||
return re; | |||
} | |||
public double im() { | |||
return im; | |||
} | |||
// return a / b | |||
public Complex divides(Complex b) { | |||
Complex a = this; | |||
return a.times(b.reciprocal()); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex exponential of this | |||
public Complex exp() { | |||
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im)); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex sine of this | |||
public Complex sin() { | |||
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im)); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex cosine of this | |||
public Complex cos() { | |||
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im)); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex tangent of this | |||
public Complex tan() { | |||
return sin().divides(cos()); | |||
} | |||
// a static version of plus | |||
public static Complex plus(Complex a, Complex b) { | |||
double real = a.re + b.re; | |||
double imag = a.im + b.im; | |||
Complex sum = new Complex(real, imag); | |||
return sum; | |||
} | |||
// See Section 3.3. | |||
public boolean equals(Object x) { | |||
if (x == null) return false; | |||
if (this.getClass() != x.getClass()) return false; | |||
Complex that = (Complex) x; | |||
return (this.re == that.re) && (this.im == that.im); | |||
} | |||
// See Section 3.3. | |||
public int hashCode() { | |||
return Objects.hash(re, im); | |||
} | |||
// sample client for testing | |||
public static void main(String[] args) { | |||
Complex a = new Complex(5.0, 6.0); | |||
Complex b = new Complex(-3.0, 4.0); | |||
System.out.println("a = " + a); | |||
System.out.println("b = " + b); | |||
System.out.println("Re(a) = " + a.re()); | |||
System.out.println("Im(a) = " + a.im()); | |||
System.out.println("b + a = " + b.plus(a)); | |||
System.out.println("a - b = " + a.minus(b)); | |||
System.out.println("a * b = " + a.times(b)); | |||
System.out.println("b * a = " + b.times(a)); | |||
System.out.println("a / b = " + a.divides(b)); | |||
System.out.println("(a / b) * b = " + a.divides(b).times(b)); | |||
System.out.println("conj(a) = " + a.conjugate()); | |||
System.out.println("|a| = " + a.abs()); | |||
System.out.println("tan(a) = " + a.tan()); | |||
} | |||
} |
@@ -0,0 +1,246 @@ | |||
package com.example.ueberwachungssystem.Detection.Signalverarbeitung; | |||
// Source: https://introcs.cs.princeton.edu/java/97data/FFT.java.html | |||
/****************************************************************************** | |||
* Compilation: javac FFT.java | |||
* Execution: java FFT n | |||
* Dependencies: com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex.java | |||
* | |||
* Compute the FFT and inverse FFT of a length n complex sequence | |||
* using the radix 2 Cooley-Tukey algorithm. | |||
* Bare bones implementation that runs in O(n log n) time and O(n) | |||
* space. Our goal is to optimize the clarity of the code, rather | |||
* than performance. | |||
* | |||
* This implementation uses the primitive root of unity w = e^(-2 pi i / n). | |||
* Some resources use w = e^(2 pi i / n). | |||
* | |||
* Reference: https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII.pdf | |||
* | |||
* Limitations | |||
* ----------- | |||
* - assumes n is a power of 2 | |||
* | |||
* - not the most memory efficient algorithm (because it uses | |||
* an object type for representing complex numbers and because | |||
* it re-allocates memory for the subarray, instead of doing | |||
* in-place or reusing a single temporary array) | |||
* | |||
* For an in-place radix 2 Cooley-Tukey FFT, see | |||
* https://introcs.cs.princeton.edu/java/97data/InplaceFFT.java.html | |||
* | |||
******************************************************************************/ | |||
public class FFT { | |||
// compute the FFT of x[], assuming its length n is a power of 2 | |||
public static Complex[] fft(Complex[] x) { | |||
int n = x.length; | |||
// base case | |||
if (n == 1) return new Complex[]{x[0]}; | |||
// radix 2 Cooley-Tukey FFT | |||
if (n % 2 != 0) { | |||
throw new IllegalArgumentException("n is not a power of 2"); | |||
} | |||
// compute FFT of even terms | |||
Complex[] even = new Complex[n / 2]; | |||
for (int k = 0; k < n / 2; k++) { | |||
even[k] = x[2 * k]; | |||
} | |||
Complex[] evenFFT = fft(even); | |||
// compute FFT of odd terms | |||
Complex[] odd = even; // reuse the array (to avoid n log n space) | |||
for (int k = 0; k < n / 2; k++) { | |||
odd[k] = x[2 * k + 1]; | |||
} | |||
Complex[] oddFFT = fft(odd); | |||
// combine | |||
Complex[] y = new Complex[n]; | |||
for (int k = 0; k < n / 2; k++) { | |||
double kth = -2 * k * Math.PI / n; | |||
Complex wk = new Complex(Math.cos(kth), Math.sin(kth)); | |||
y[k] = evenFFT[k].plus(wk.times(oddFFT[k])); | |||
y[k + n / 2] = evenFFT[k].minus(wk.times(oddFFT[k])); | |||
} | |||
return y; | |||
} | |||
// compute the inverse FFT of x[], assuming its length n is a power of 2 | |||
public static Complex[] ifft(Complex[] x) { | |||
int n = x.length; | |||
Complex[] y = new Complex[n]; | |||
// take conjugate | |||
for (int i = 0; i < n; i++) { | |||
y[i] = x[i].conjugate(); | |||
} | |||
// compute forward FFT | |||
y = fft(y); | |||
// take conjugate again | |||
for (int i = 0; i < n; i++) { | |||
y[i] = y[i].conjugate(); | |||
} | |||
// divide by n | |||
for (int i = 0; i < n; i++) { | |||
y[i] = y[i].scale(1.0 / n); | |||
} | |||
return y; | |||
} | |||
// compute the circular convolution of x and y | |||
public static Complex[] cconvolve(Complex[] x, Complex[] y) { | |||
// should probably pad x and y with 0s so that they have same length | |||
// and are powers of 2 | |||
if (x.length != y.length) { | |||
throw new IllegalArgumentException("Dimensions don't agree"); | |||
} | |||
int n = x.length; | |||
// compute FFT of each sequence | |||
Complex[] a = fft(x); | |||
Complex[] b = fft(y); | |||
// point-wise multiply | |||
Complex[] c = new Complex[n]; | |||
for (int i = 0; i < n; i++) { | |||
c[i] = a[i].times(b[i]); | |||
} | |||
// compute inverse FFT | |||
return ifft(c); | |||
} | |||
// compute the linear convolution of x and y | |||
public static Complex[] convolve(Complex[] x, Complex[] y) { | |||
Complex ZERO = new Complex(0, 0); | |||
Complex[] a = new Complex[2 * x.length]; | |||
for (int i = 0; i < x.length; i++) a[i] = x[i]; | |||
for (int i = x.length; i < 2 * x.length; i++) a[i] = ZERO; | |||
Complex[] b = new Complex[2 * y.length]; | |||
for (int i = 0; i < y.length; i++) b[i] = y[i]; | |||
for (int i = y.length; i < 2 * y.length; i++) b[i] = ZERO; | |||
return cconvolve(a, b); | |||
} | |||
// compute the DFT of x[] via brute force (n^2 time) | |||
public static Complex[] dft(Complex[] x) { | |||
int n = x.length; | |||
Complex ZERO = new Complex(0, 0); | |||
Complex[] y = new Complex[n]; | |||
for (int k = 0; k < n; k++) { | |||
y[k] = ZERO; | |||
for (int j = 0; j < n; j++) { | |||
int power = (k * j) % n; | |||
double kth = -2 * power * Math.PI / n; | |||
Complex wkj = new Complex(Math.cos(kth), Math.sin(kth)); | |||
y[k] = y[k].plus(x[j].times(wkj)); | |||
} | |||
} | |||
return y; | |||
} | |||
// display an array of com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex numbers to standard output | |||
public static void show(Complex[] x, String title) { | |||
System.out.println(title); | |||
System.out.println("-------------------"); | |||
for (int i = 0; i < x.length; i++) { | |||
System.out.println(x[i]); | |||
} | |||
System.out.println(); | |||
} | |||
/*************************************************************************** | |||
* Test client and sample execution | |||
* | |||
* % java FFT 4 | |||
* x | |||
* ------------------- | |||
* -0.03480425839330703 | |||
* 0.07910192950176387 | |||
* 0.7233322451735928 | |||
* 0.1659819820667019 | |||
* | |||
* y = fft(x) | |||
* ------------------- | |||
* 0.9336118983487516 | |||
* -0.7581365035668999 + 0.08688005256493803i | |||
* 0.44344407521182005 | |||
* -0.7581365035668999 - 0.08688005256493803i | |||
* | |||
* z = ifft(y) | |||
* ------------------- | |||
* -0.03480425839330703 | |||
* 0.07910192950176387 + 2.6599344570851287E-18i | |||
* 0.7233322451735928 | |||
* 0.1659819820667019 - 2.6599344570851287E-18i | |||
* | |||
* c = cconvolve(x, x) | |||
* ------------------- | |||
* 0.5506798633981853 | |||
* 0.23461407150576394 - 4.033186818023279E-18i | |||
* -0.016542951108772352 | |||
* 0.10288019294318276 + 4.033186818023279E-18i | |||
* | |||
* d = convolve(x, x) | |||
* ------------------- | |||
* 0.001211336402308083 - 3.122502256758253E-17i | |||
* -0.005506167987577068 - 5.058885073636224E-17i | |||
* -0.044092969479563274 + 2.1934338938072244E-18i | |||
* 0.10288019294318276 - 3.6147323062478115E-17i | |||
* 0.5494685269958772 + 3.122502256758253E-17i | |||
* 0.240120239493341 + 4.655566391833896E-17i | |||
* 0.02755001837079092 - 2.1934338938072244E-18i | |||
* 4.01805098805014E-17i | |||
* | |||
***************************************************************************/ | |||
public static void main(String[] args) { | |||
int n = Integer.parseInt(args[0]); | |||
Complex[] x = new Complex[n]; | |||
// original data | |||
for (int i = 0; i < n; i++) { | |||
x[i] = new Complex(i, 0); | |||
} | |||
show(x, "x"); | |||
// FFT of original data | |||
Complex[] y = fft(x); | |||
show(y, "y = fft(x)"); | |||
// FFT of original data | |||
Complex[] y2 = dft(x); | |||
show(y2, "y2 = dft(x)"); | |||
// take inverse FFT | |||
Complex[] z = ifft(y); | |||
show(z, "z = ifft(y)"); | |||
// circular convolution of x with itself | |||
Complex[] c = cconvolve(x, x); | |||
show(c, "c = cconvolve(x, x)"); | |||
// linear convolution of x with itself | |||
Complex[] d = convolve(x, x); | |||
show(d, "d = convolve(x, x)"); | |||
} | |||
} | |||
@@ -1,5 +1,5 @@ | |||
// Top-level build file where you can add configuration options common to all sub-projects/modules. | |||
plugins { | |||
id 'com.android.application' version '7.4.2' apply false | |||
id 'com.android.library' version '7.4.2' apply false | |||
id 'com.android.application' version '8.0.0' apply false | |||
id 'com.android.library' version '8.0.0' apply false | |||
} |
@@ -18,4 +18,6 @@ android.useAndroidX=true | |||
# Enables namespacing of each library's R class so that its R class includes only the | |||
# resources declared in the library itself and none from the library's dependencies, | |||
# thereby reducing the size of the R class for that library | |||
android.nonTransitiveRClass=true | |||
android.nonTransitiveRClass=true | |||
android.defaults.buildfeatures.buildconfig=true | |||
android.nonFinalResIds=false |
@@ -1,6 +1,6 @@ | |||
#Thu May 11 15:04:30 CEST 2023 | |||
distributionBase=GRADLE_USER_HOME | |||
distributionUrl=https\://services.gradle.org/distributions/gradle-7.5-bin.zip | |||
distributionUrl=https\://services.gradle.org/distributions/gradle-8.0-bin.zip | |||
distributionPath=wrapper/dists | |||
zipStorePath=wrapper/dists | |||
zipStoreBase=GRADLE_USER_HOME |