Sensor als Service einrichten, der aus Activity heraus gestartet werden kann. | |||||
Stichwort: Intent | |||||
Siehe Skript Teil 1 |
package com.example.ueberwachungssystem.Detection; | |||||
import static java.lang.Math.sqrt; | |||||
import android.content.Context; | |||||
import android.hardware.Sensor; | |||||
import android.hardware.SensorEvent; | |||||
import android.hardware.SensorEventListener; | |||||
import android.hardware.SensorManager; | |||||
/** | |||||
* Accelerometer inherits some methods from abstract Detector class (more info there) | |||||
* | |||||
* | |||||
* USE FROM MAIN ACTIVITY: | |||||
* | |||||
* Accelerometer beschleunigungssensor = new Accelerometer(this); | |||||
* onCreate: | |||||
* //Accelerometer Setup | |||||
* beschleunigungssensor = new Accelerometer(this, logger, textViewLog); //logger and textview only for debugging necessary | |||||
* beschleunigungssensor.getSensor(); | |||||
* | |||||
* //Starting Detection: | |||||
* beschleunigungssensor.startDetection(); | |||||
* //Stopping Detection: also recommended at onPause to avoid unnecessary battery consumption | |||||
* beschleunigungssensor.stopDetection(); | |||||
* | |||||
* */ | |||||
public class Accelerometer extends Detector implements SensorEventListener { | |||||
public SensorManager sensorManager; | |||||
private static final int sensorType = Sensor.TYPE_LINEAR_ACCELERATION; | |||||
private Sensor accelerometer; | |||||
private Context context; | |||||
boolean alarm = false; | |||||
//Preallocate memory for the data of each axis of the acceleration sensor | |||||
float x; | |||||
float y; | |||||
float z; | |||||
float betrag; //Betrag aller drei Achsen sqrt(x*x + y*y + z*z) | |||||
private DetectionReport detectionReport; | |||||
// In constructor pass Activity, Context and TextView from MainActivity in Accelerometer class | |||||
public Accelerometer(Context context){ | |||||
super(); //von Detektor | |||||
this.context = context; | |||||
} | |||||
public void getSensor(){ | |||||
sensorManager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE); | |||||
if(sensorManager.getSensorList(sensorType).size()==0) { | |||||
accelerometer = null; | |||||
} | |||||
else { | |||||
accelerometer = sensorManager.getSensorList(sensorType).get(0); | |||||
} | |||||
} | |||||
@Override | |||||
public void onSensorChanged(SensorEvent event) { | |||||
try { | |||||
checkAlarm(event); | |||||
} catch (InterruptedException e) { | |||||
throw new RuntimeException(e); | |||||
} | |||||
} | |||||
public void checkAlarm (SensorEvent event) throws InterruptedException { | |||||
x = event.values[0]; | |||||
y = event.values[1]; | |||||
z = event.values[2]; | |||||
betrag = (float) sqrt(x*x + y*y + z*z); | |||||
float threshold = 1.5F; | |||||
if (!alarm) { | |||||
if (betrag > threshold) { | |||||
alarm = true; | |||||
reportViolation("Bewegung", betrag); | |||||
} | |||||
} else { | |||||
if (betrag < threshold) { | |||||
alarm = false; | |||||
} else { | |||||
} | |||||
} | |||||
} | |||||
@Override | |||||
public void onAccuracyChanged(Sensor sensor, int accuracy) { | |||||
} | |||||
@Override | |||||
public void startDetection() { | |||||
// entspricht void start() | |||||
//getSensor(); | |||||
if (accelerometer != null) { | |||||
sensorManager.registerListener(this, accelerometer, SensorManager.SENSOR_DELAY_GAME); | |||||
} | |||||
} | |||||
@Override | |||||
public void stopDetection() { | |||||
// entspricht void stop() | |||||
sensorManager.unregisterListener(this, accelerometer); | |||||
} | |||||
} |
package com.example.ueberwachungssystem.Detection; | |||||
import static java.lang.Math.*; | |||||
import android.Manifest; | |||||
import android.annotation.SuppressLint; | |||||
import android.app.Activity; | |||||
import android.content.Context; | |||||
import android.content.pm.PackageManager; | |||||
import android.media.AudioFormat; | |||||
import android.media.AudioRecord; | |||||
import android.media.MediaRecorder; | |||||
import android.os.AsyncTask; | |||||
import android.util.Log; | |||||
import androidx.core.app.ActivityCompat; | |||||
import androidx.core.content.ContextCompat; | |||||
import com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex; | |||||
import com.example.ueberwachungssystem.Detection.Signalverarbeitung.FFT; | |||||
import com.example.ueberwachungssystem.Detection.DetectionReport; | |||||
import com.example.ueberwachungssystem.Detection.Detector; | |||||
public class MicrophoneDetector extends Detector { | |||||
/** | |||||
* Constructor - takes context of current activity | |||||
* | |||||
* @param context | |||||
*/ | |||||
private static final int RECHTEANFORDERUNG_MIKROFON = 1; | |||||
private AufnahmeTask aufnahmeTask; | |||||
public boolean armed = false; | |||||
public int Schwellwert_Alarm = 100; | |||||
private Context context; | |||||
public MicrophoneDetector(Context context) { | |||||
super(); | |||||
this.context = context; | |||||
} | |||||
@Override | |||||
public void startDetection() { | |||||
aufnahmeTask = new AufnahmeTask(); | |||||
aufnahmeTask.execute(); | |||||
} | |||||
@Override | |||||
public void stopDetection() { | |||||
if (aufnahmeTask != null) { | |||||
aufnahmeTask.cancel(true); | |||||
} | |||||
} | |||||
class AufnahmeTask extends AsyncTask<Long, Verarbeitungsergebnis, Void> { | |||||
private AudioRecord recorder; | |||||
private final int sampleRateInHz = 44100; | |||||
private final int channelConfig = AudioFormat.CHANNEL_IN_MONO; | |||||
private final int audioFormat = AudioFormat.ENCODING_PCM_16BIT; | |||||
private int minPufferGroesseInBytes; | |||||
private int pufferGroesseInBytes; | |||||
private RingPuffer ringPuffer = new RingPuffer(10); | |||||
private float kalibierWert; | |||||
private com.example.ueberwachungssystem.Detection.DetectionReport detectionReport; | |||||
@SuppressLint("MissingPermission") | |||||
AufnahmeTask() { | |||||
minPufferGroesseInBytes = AudioRecord.getMinBufferSize(sampleRateInHz, channelConfig, audioFormat); | |||||
pufferGroesseInBytes = minPufferGroesseInBytes * 2; | |||||
try { | |||||
recorder = new AudioRecord(MediaRecorder.AudioSource.MIC, sampleRateInHz, channelConfig, audioFormat, pufferGroesseInBytes); | |||||
} catch (Exception e) { | |||||
e.printStackTrace(); | |||||
} | |||||
Log.d("0","Puffergroeße: "+ minPufferGroesseInBytes + " " + pufferGroesseInBytes); | |||||
Log.d("0","Recorder (SR, CH): "+ recorder.getSampleRate() + " " + recorder.getChannelCount()); | |||||
int anzahlBytesProAbtastwert; | |||||
String s; | |||||
switch (recorder.getAudioFormat()) { | |||||
case AudioFormat.ENCODING_PCM_8BIT: | |||||
s = "8 Bit PCM "; | |||||
anzahlBytesProAbtastwert = 1; | |||||
break; | |||||
case AudioFormat.ENCODING_PCM_16BIT: | |||||
s = "16 Bit PCM"; | |||||
anzahlBytesProAbtastwert = 2; | |||||
break; | |||||
case AudioFormat.ENCODING_PCM_FLOAT: | |||||
s = "Float PCM"; | |||||
anzahlBytesProAbtastwert = 4; | |||||
break; | |||||
default: | |||||
throw new IllegalArgumentException(); | |||||
} | |||||
switch (recorder.getChannelConfiguration()) { | |||||
case AudioFormat.CHANNEL_IN_MONO: | |||||
s = "Mono"; | |||||
break; | |||||
case AudioFormat.CHANNEL_IN_STEREO: | |||||
s = "Stereo"; | |||||
anzahlBytesProAbtastwert *= 2; | |||||
break; | |||||
case AudioFormat.CHANNEL_INVALID: | |||||
s = "ungültig"; | |||||
break; | |||||
default: | |||||
throw new IllegalArgumentException(); | |||||
} | |||||
Log.d("0","Konfiguration: "+ s); | |||||
int pufferGroesseInAnzahlAbtastwerten = pufferGroesseInBytes / anzahlBytesProAbtastwert; | |||||
} | |||||
@Override | |||||
protected Void doInBackground(Long... params) { | |||||
recorder.startRecording(); | |||||
short[] puffer = new short[pufferGroesseInBytes / 2]; | |||||
long lastTime = System.currentTimeMillis(); | |||||
float verarbeitungsrate = 0; | |||||
final int maxZaehlerZeitMessung = 10; | |||||
int zaehlerZeitMessung = 0; | |||||
int anzahlVerarbeitet = 0; | |||||
GleitenderMittelwert gleitenderMittelwert = new GleitenderMittelwert(0.3f); | |||||
//Kalibrierung | |||||
try { | |||||
Thread.sleep(3000); // Time to lay down the phone | |||||
} catch (InterruptedException e) { | |||||
e.printStackTrace(); | |||||
} | |||||
int i = 0; | |||||
for (i = 0; i < 20; i++) { | |||||
int n = recorder.read(puffer, 0, puffer.length); | |||||
Verarbeitungsergebnis kalibrierErgebnis = verarbeiten(puffer, n); | |||||
kalibierWert += kalibrierErgebnis.maxAmp; | |||||
try { | |||||
Thread.sleep(50); | |||||
} catch (InterruptedException e) { | |||||
e.printStackTrace(); | |||||
} | |||||
} | |||||
kalibierWert = kalibierWert/i; | |||||
// __Part of FFT__ | |||||
// Complex[] zeitSignal = new Complex[puffer.length]; | |||||
// for (int j = 0; j < puffer.length; j++) { | |||||
// zeitSignal[j] = new Complex(puffer[j], 0); | |||||
// } | |||||
// Complex[] spektrum = FFT.fft(zeitSignal); | |||||
// double[] spektrum = calculateFFT(puffer); | |||||
// DataPoint AddPoint; | |||||
// LineGraphSeries<DataPoint> series = new LineGraphSeries<DataPoint>(new DataPoint[]{}); | |||||
// for (i = 0; i < spektrum.length; i++) { | |||||
// AddPoint = new DataPoint(i, spektrum[i]); | |||||
// series.appendData(AddPoint, true, spektrum.length); | |||||
// } | |||||
// graph.addSeries(series); | |||||
for (; ; ) { | |||||
if (aufnahmeTask.isCancelled()) { | |||||
break; | |||||
} else { | |||||
int n = recorder.read(puffer, 0, puffer.length); | |||||
Verarbeitungsergebnis ergebnis = verarbeiten(puffer, n); | |||||
anzahlVerarbeitet += n; | |||||
// __Part of FFT__ | |||||
// spektrum = calculateFFT(puffer); | |||||
// LineGraphSeries<DataPoint> newseries = new LineGraphSeries<DataPoint>(new DataPoint[]{}); | |||||
// for (i = 0; i < spektrum.length; i++) { | |||||
// AddPoint = new DataPoint(i, spektrum[i]); | |||||
// newseries.appendData(AddPoint, true, spektrum.length); | |||||
// } | |||||
zaehlerZeitMessung++; | |||||
if (zaehlerZeitMessung == maxZaehlerZeitMessung) { | |||||
long time = System.currentTimeMillis(); | |||||
long deltaTime = time - lastTime; | |||||
verarbeitungsrate = 1000.0f * anzahlVerarbeitet / deltaTime; | |||||
verarbeitungsrate = gleitenderMittelwert.mittel(verarbeitungsrate); | |||||
zaehlerZeitMessung = 0; | |||||
anzahlVerarbeitet = 0; | |||||
lastTime = time; | |||||
} | |||||
ergebnis.verarbeitungsrate = (int) verarbeitungsrate; | |||||
publishProgress(ergebnis); | |||||
try { | |||||
Thread.sleep(10); | |||||
} catch (InterruptedException e) { | |||||
e.printStackTrace(); | |||||
} | |||||
} | |||||
} | |||||
recorder.release(); | |||||
return null; | |||||
} | |||||
private Verarbeitungsergebnis verarbeiten(short[] daten, int n) { | |||||
String status; | |||||
short maxAmp = -1; | |||||
if (n == AudioRecord.ERROR_INVALID_OPERATION) { | |||||
status = "ERROR_INVALID_OPERATION"; | |||||
} else if (n == AudioRecord.ERROR_BAD_VALUE) { | |||||
status = "ERROR_BAD_VALUE"; | |||||
} else { | |||||
status = "OK"; | |||||
short max = 0; | |||||
for (int i = 0; i < n; i++) { | |||||
if (daten[i] > max) { | |||||
max = daten[i]; | |||||
} | |||||
} | |||||
ringPuffer.hinzufuegen(max); | |||||
maxAmp = ringPuffer.maximum(); | |||||
if (maxAmp <= Schwellwert_Alarm+kalibierWert) { | |||||
armed = true; | |||||
} | |||||
} | |||||
return new Verarbeitungsergebnis(status, maxAmp, 0); | |||||
} | |||||
@Override | |||||
protected void onProgressUpdate(Verarbeitungsergebnis... progress) { | |||||
super.onProgressUpdate(progress); | |||||
float maxAmpPrint = round(20*log10(abs(progress[0].maxAmp/1.0))); | |||||
float kalibierWertPrint = round(20*log10(abs(kalibierWert))); | |||||
Log.d("0","VR, Max, Kal:" + progress[0].verarbeitungsrate + ", " + maxAmpPrint | |||||
+ " dB, " + kalibierWertPrint + " dB"); | |||||
if (progress[0].maxAmp >= Schwellwert_Alarm+kalibierWert && armed == true) { | |||||
armed = false; | |||||
detectionReport = new DetectionReport(true, "Audio", maxAmpPrint); | |||||
reportViolation("Audio", maxAmpPrint); | |||||
Log.d("1",detectionReport.toString()); | |||||
} | |||||
} | |||||
} | |||||
private double[] calculateFFT(short[] zeitsignal) | |||||
{ | |||||
byte signal[] = new byte[zeitsignal.length]; | |||||
// loops through all the values of a Short | |||||
for (int i = 0; i < zeitsignal.length-1; i++) { | |||||
signal[i] = (byte) (zeitsignal[i]); | |||||
signal[i+1] = (byte) (zeitsignal[i] >> 8); | |||||
} | |||||
final int mNumberOfFFTPoints =1024; | |||||
double temp; | |||||
Complex[] y; | |||||
Complex[] complexSignal = new Complex[mNumberOfFFTPoints]; | |||||
double[] absSignal = new double[mNumberOfFFTPoints/2]; | |||||
for(int i = 0; i < mNumberOfFFTPoints; i++){ | |||||
temp = (double)((signal[2*i] & 0xFF) | (signal[2*i+1] << 8)) / 32768.0F; | |||||
complexSignal[i] = new Complex(temp,0.0); | |||||
} | |||||
y = FFT.fft(complexSignal); | |||||
for(int i = 0; i < (mNumberOfFFTPoints/2); i++) | |||||
{ | |||||
absSignal[i] = y[i].abs(); | |||||
} | |||||
return absSignal; | |||||
} | |||||
class Verarbeitungsergebnis { | |||||
String status; | |||||
short maxAmp; | |||||
int verarbeitungsrate; | |||||
Verarbeitungsergebnis(String status, short maxAmp, int verarbeitungsrate) { | |||||
this.status = status; | |||||
this.maxAmp = maxAmp; | |||||
this.verarbeitungsrate = verarbeitungsrate; | |||||
} | |||||
} | |||||
class RingPuffer { | |||||
private short[] puffer; | |||||
private final int laenge; | |||||
private int anzahlEnthaltenerDaten; | |||||
private int position; | |||||
public RingPuffer(int n) { | |||||
laenge = n; | |||||
anzahlEnthaltenerDaten = 0; | |||||
position = 0; | |||||
puffer = new short[laenge]; | |||||
} | |||||
public void hinzufuegen(short wert) { | |||||
puffer[position] = wert; | |||||
position++; | |||||
if (position >= laenge) { | |||||
position = 0; | |||||
} | |||||
if (anzahlEnthaltenerDaten < laenge) { | |||||
anzahlEnthaltenerDaten++; | |||||
} | |||||
} | |||||
public void hinzufuegen(short[] daten) { | |||||
for (short d : daten) { | |||||
puffer[position] = d; | |||||
position++; | |||||
if (position >= laenge) { | |||||
position = 0; | |||||
} | |||||
} | |||||
if (anzahlEnthaltenerDaten < laenge) { | |||||
anzahlEnthaltenerDaten += daten.length; | |||||
if (anzahlEnthaltenerDaten >= laenge) { | |||||
anzahlEnthaltenerDaten = laenge; | |||||
} | |||||
} | |||||
} | |||||
public short maximum() { | |||||
short max = 0; | |||||
for (int i = 0; i < anzahlEnthaltenerDaten; i++) { | |||||
if (puffer[i] > max) { | |||||
max = puffer[i]; | |||||
} | |||||
} | |||||
return max; | |||||
} | |||||
public float mittelwert() { | |||||
float summe = 0; | |||||
for (int i = 0; i < anzahlEnthaltenerDaten; i++) { | |||||
summe += puffer[i]; | |||||
} | |||||
return summe / anzahlEnthaltenerDaten; | |||||
} | |||||
} | |||||
class GleitenderMittelwert { | |||||
private final float wichtungNeuerWert; | |||||
private final float wichtungAlterWert; | |||||
private float mittelwert = 0; | |||||
private boolean istMittelwertGesetzt = false; | |||||
GleitenderMittelwert(float wichtungNeuerWert) { | |||||
this.wichtungNeuerWert = wichtungNeuerWert; | |||||
this.wichtungAlterWert = 1 - this.wichtungNeuerWert; | |||||
} | |||||
float MittelwertPuffer(short[] puffer) { | |||||
for (int i = 0; i < puffer.length; i++) { | |||||
mittelwert = Math.abs(puffer[i]); | |||||
} | |||||
mittelwert = mittelwert/puffer.length; | |||||
return mittelwert; | |||||
} | |||||
float mittel(float wert) { | |||||
if (istMittelwertGesetzt) { | |||||
mittelwert = wert * wichtungNeuerWert + mittelwert * wichtungAlterWert; | |||||
} else { | |||||
mittelwert = wert; | |||||
istMittelwertGesetzt = true; | |||||
} | |||||
return mittelwert; | |||||
} | |||||
} | |||||
} |
package com.example.ueberwachungssystem.Detection.Signalverarbeitung; | |||||
import java.util.Objects; | |||||
public class Complex { | |||||
private final double re; // the real part | |||||
private final double im; // the imaginary part | |||||
// create a new object with the given real and imaginary parts | |||||
public Complex(double real, double imag) { | |||||
re = real; | |||||
im = imag; | |||||
} | |||||
// return a string representation of the invoking com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object | |||||
public String toString() { | |||||
if (im == 0) return re + ""; | |||||
if (re == 0) return im + "i"; | |||||
if (im < 0) return re + " - " + (-im) + "i"; | |||||
return re + " + " + im + "i"; | |||||
} | |||||
// return abs/modulus/magnitude | |||||
public double abs() { | |||||
return Math.hypot(re, im); | |||||
} | |||||
// return angle/phase/argument, normalized to be between -pi and pi | |||||
public double phase() { | |||||
return Math.atan2(im, re); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this + b) | |||||
public Complex plus(Complex b) { | |||||
Complex a = this; // invoking object | |||||
double real = a.re + b.re; | |||||
double imag = a.im + b.im; | |||||
return new Complex(real, imag); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this - b) | |||||
public Complex minus(Complex b) { | |||||
Complex a = this; | |||||
double real = a.re - b.re; | |||||
double imag = a.im - b.im; | |||||
return new Complex(real, imag); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this * b) | |||||
public Complex times(Complex b) { | |||||
Complex a = this; | |||||
double real = a.re * b.re - a.im * b.im; | |||||
double imag = a.re * b.im + a.im * b.re; | |||||
return new Complex(real, imag); | |||||
} | |||||
// return a new object whose value is (this * alpha) | |||||
public Complex scale(double alpha) { | |||||
return new Complex(alpha * re, alpha * im); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the conjugate of this | |||||
public Complex conjugate() { | |||||
return new Complex(re, -im); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the reciprocal of this | |||||
public Complex reciprocal() { | |||||
double scale = re * re + im * im; | |||||
return new Complex(re / scale, -im / scale); | |||||
} | |||||
// return the real or imaginary part | |||||
public double re() { | |||||
return re; | |||||
} | |||||
public double im() { | |||||
return im; | |||||
} | |||||
// return a / b | |||||
public Complex divides(Complex b) { | |||||
Complex a = this; | |||||
return a.times(b.reciprocal()); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex exponential of this | |||||
public Complex exp() { | |||||
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im)); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex sine of this | |||||
public Complex sin() { | |||||
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im)); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex cosine of this | |||||
public Complex cos() { | |||||
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im)); | |||||
} | |||||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex tangent of this | |||||
public Complex tan() { | |||||
return sin().divides(cos()); | |||||
} | |||||
// a static version of plus | |||||
public static Complex plus(Complex a, Complex b) { | |||||
double real = a.re + b.re; | |||||
double imag = a.im + b.im; | |||||
Complex sum = new Complex(real, imag); | |||||
return sum; | |||||
} | |||||
// See Section 3.3. | |||||
public boolean equals(Object x) { | |||||
if (x == null) return false; | |||||
if (this.getClass() != x.getClass()) return false; | |||||
Complex that = (Complex) x; | |||||
return (this.re == that.re) && (this.im == that.im); | |||||
} | |||||
// See Section 3.3. | |||||
public int hashCode() { | |||||
return Objects.hash(re, im); | |||||
} | |||||
// sample client for testing | |||||
public static void main(String[] args) { | |||||
Complex a = new Complex(5.0, 6.0); | |||||
Complex b = new Complex(-3.0, 4.0); | |||||
System.out.println("a = " + a); | |||||
System.out.println("b = " + b); | |||||
System.out.println("Re(a) = " + a.re()); | |||||
System.out.println("Im(a) = " + a.im()); | |||||
System.out.println("b + a = " + b.plus(a)); | |||||
System.out.println("a - b = " + a.minus(b)); | |||||
System.out.println("a * b = " + a.times(b)); | |||||
System.out.println("b * a = " + b.times(a)); | |||||
System.out.println("a / b = " + a.divides(b)); | |||||
System.out.println("(a / b) * b = " + a.divides(b).times(b)); | |||||
System.out.println("conj(a) = " + a.conjugate()); | |||||
System.out.println("|a| = " + a.abs()); | |||||
System.out.println("tan(a) = " + a.tan()); | |||||
} | |||||
} |
package com.example.ueberwachungssystem.Detection.Signalverarbeitung; | |||||
// Source: https://introcs.cs.princeton.edu/java/97data/FFT.java.html | |||||
/****************************************************************************** | |||||
* Compilation: javac FFT.java | |||||
* Execution: java FFT n | |||||
* Dependencies: com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex.java | |||||
* | |||||
* Compute the FFT and inverse FFT of a length n complex sequence | |||||
* using the radix 2 Cooley-Tukey algorithm. | |||||
* Bare bones implementation that runs in O(n log n) time and O(n) | |||||
* space. Our goal is to optimize the clarity of the code, rather | |||||
* than performance. | |||||
* | |||||
* This implementation uses the primitive root of unity w = e^(-2 pi i / n). | |||||
* Some resources use w = e^(2 pi i / n). | |||||
* | |||||
* Reference: https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII.pdf | |||||
* | |||||
* Limitations | |||||
* ----------- | |||||
* - assumes n is a power of 2 | |||||
* | |||||
* - not the most memory efficient algorithm (because it uses | |||||
* an object type for representing complex numbers and because | |||||
* it re-allocates memory for the subarray, instead of doing | |||||
* in-place or reusing a single temporary array) | |||||
* | |||||
* For an in-place radix 2 Cooley-Tukey FFT, see | |||||
* https://introcs.cs.princeton.edu/java/97data/InplaceFFT.java.html | |||||
* | |||||
******************************************************************************/ | |||||
public class FFT { | |||||
// compute the FFT of x[], assuming its length n is a power of 2 | |||||
public static Complex[] fft(Complex[] x) { | |||||
int n = x.length; | |||||
// base case | |||||
if (n == 1) return new Complex[]{x[0]}; | |||||
// radix 2 Cooley-Tukey FFT | |||||
if (n % 2 != 0) { | |||||
throw new IllegalArgumentException("n is not a power of 2"); | |||||
} | |||||
// compute FFT of even terms | |||||
Complex[] even = new Complex[n / 2]; | |||||
for (int k = 0; k < n / 2; k++) { | |||||
even[k] = x[2 * k]; | |||||
} | |||||
Complex[] evenFFT = fft(even); | |||||
// compute FFT of odd terms | |||||
Complex[] odd = even; // reuse the array (to avoid n log n space) | |||||
for (int k = 0; k < n / 2; k++) { | |||||
odd[k] = x[2 * k + 1]; | |||||
} | |||||
Complex[] oddFFT = fft(odd); | |||||
// combine | |||||
Complex[] y = new Complex[n]; | |||||
for (int k = 0; k < n / 2; k++) { | |||||
double kth = -2 * k * Math.PI / n; | |||||
Complex wk = new Complex(Math.cos(kth), Math.sin(kth)); | |||||
y[k] = evenFFT[k].plus(wk.times(oddFFT[k])); | |||||
y[k + n / 2] = evenFFT[k].minus(wk.times(oddFFT[k])); | |||||
} | |||||
return y; | |||||
} | |||||
// compute the inverse FFT of x[], assuming its length n is a power of 2 | |||||
public static Complex[] ifft(Complex[] x) { | |||||
int n = x.length; | |||||
Complex[] y = new Complex[n]; | |||||
// take conjugate | |||||
for (int i = 0; i < n; i++) { | |||||
y[i] = x[i].conjugate(); | |||||
} | |||||
// compute forward FFT | |||||
y = fft(y); | |||||
// take conjugate again | |||||
for (int i = 0; i < n; i++) { | |||||
y[i] = y[i].conjugate(); | |||||
} | |||||
// divide by n | |||||
for (int i = 0; i < n; i++) { | |||||
y[i] = y[i].scale(1.0 / n); | |||||
} | |||||
return y; | |||||
} | |||||
// compute the circular convolution of x and y | |||||
public static Complex[] cconvolve(Complex[] x, Complex[] y) { | |||||
// should probably pad x and y with 0s so that they have same length | |||||
// and are powers of 2 | |||||
if (x.length != y.length) { | |||||
throw new IllegalArgumentException("Dimensions don't agree"); | |||||
} | |||||
int n = x.length; | |||||
// compute FFT of each sequence | |||||
Complex[] a = fft(x); | |||||
Complex[] b = fft(y); | |||||
// point-wise multiply | |||||
Complex[] c = new Complex[n]; | |||||
for (int i = 0; i < n; i++) { | |||||
c[i] = a[i].times(b[i]); | |||||
} | |||||
// compute inverse FFT | |||||
return ifft(c); | |||||
} | |||||
// compute the linear convolution of x and y | |||||
public static Complex[] convolve(Complex[] x, Complex[] y) { | |||||
Complex ZERO = new Complex(0, 0); | |||||
Complex[] a = new Complex[2 * x.length]; | |||||
for (int i = 0; i < x.length; i++) a[i] = x[i]; | |||||
for (int i = x.length; i < 2 * x.length; i++) a[i] = ZERO; | |||||
Complex[] b = new Complex[2 * y.length]; | |||||
for (int i = 0; i < y.length; i++) b[i] = y[i]; | |||||
for (int i = y.length; i < 2 * y.length; i++) b[i] = ZERO; | |||||
return cconvolve(a, b); | |||||
} | |||||
// compute the DFT of x[] via brute force (n^2 time) | |||||
public static Complex[] dft(Complex[] x) { | |||||
int n = x.length; | |||||
Complex ZERO = new Complex(0, 0); | |||||
Complex[] y = new Complex[n]; | |||||
for (int k = 0; k < n; k++) { | |||||
y[k] = ZERO; | |||||
for (int j = 0; j < n; j++) { | |||||
int power = (k * j) % n; | |||||
double kth = -2 * power * Math.PI / n; | |||||
Complex wkj = new Complex(Math.cos(kth), Math.sin(kth)); | |||||
y[k] = y[k].plus(x[j].times(wkj)); | |||||
} | |||||
} | |||||
return y; | |||||
} | |||||
// display an array of com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex numbers to standard output | |||||
public static void show(Complex[] x, String title) { | |||||
System.out.println(title); | |||||
System.out.println("-------------------"); | |||||
for (int i = 0; i < x.length; i++) { | |||||
System.out.println(x[i]); | |||||
} | |||||
System.out.println(); | |||||
} | |||||
/*************************************************************************** | |||||
* Test client and sample execution | |||||
* | |||||
* % java FFT 4 | |||||
* x | |||||
* ------------------- | |||||
* -0.03480425839330703 | |||||
* 0.07910192950176387 | |||||
* 0.7233322451735928 | |||||
* 0.1659819820667019 | |||||
* | |||||
* y = fft(x) | |||||
* ------------------- | |||||
* 0.9336118983487516 | |||||
* -0.7581365035668999 + 0.08688005256493803i | |||||
* 0.44344407521182005 | |||||
* -0.7581365035668999 - 0.08688005256493803i | |||||
* | |||||
* z = ifft(y) | |||||
* ------------------- | |||||
* -0.03480425839330703 | |||||
* 0.07910192950176387 + 2.6599344570851287E-18i | |||||
* 0.7233322451735928 | |||||
* 0.1659819820667019 - 2.6599344570851287E-18i | |||||
* | |||||
* c = cconvolve(x, x) | |||||
* ------------------- | |||||
* 0.5506798633981853 | |||||
* 0.23461407150576394 - 4.033186818023279E-18i | |||||
* -0.016542951108772352 | |||||
* 0.10288019294318276 + 4.033186818023279E-18i | |||||
* | |||||
* d = convolve(x, x) | |||||
* ------------------- | |||||
* 0.001211336402308083 - 3.122502256758253E-17i | |||||
* -0.005506167987577068 - 5.058885073636224E-17i | |||||
* -0.044092969479563274 + 2.1934338938072244E-18i | |||||
* 0.10288019294318276 - 3.6147323062478115E-17i | |||||
* 0.5494685269958772 + 3.122502256758253E-17i | |||||
* 0.240120239493341 + 4.655566391833896E-17i | |||||
* 0.02755001837079092 - 2.1934338938072244E-18i | |||||
* 4.01805098805014E-17i | |||||
* | |||||
***************************************************************************/ | |||||
public static void main(String[] args) { | |||||
int n = Integer.parseInt(args[0]); | |||||
Complex[] x = new Complex[n]; | |||||
// original data | |||||
for (int i = 0; i < n; i++) { | |||||
x[i] = new Complex(i, 0); | |||||
} | |||||
show(x, "x"); | |||||
// FFT of original data | |||||
Complex[] y = fft(x); | |||||
show(y, "y = fft(x)"); | |||||
// FFT of original data | |||||
Complex[] y2 = dft(x); | |||||
show(y2, "y2 = dft(x)"); | |||||
// take inverse FFT | |||||
Complex[] z = ifft(y); | |||||
show(z, "z = ifft(y)"); | |||||
// circular convolution of x with itself | |||||
Complex[] c = cconvolve(x, x); | |||||
show(c, "c = cconvolve(x, x)"); | |||||
// linear convolution of x with itself | |||||
Complex[] d = convolve(x, x); | |||||
show(d, "d = convolve(x, x)"); | |||||
} | |||||
} | |||||
// Top-level build file where you can add configuration options common to all sub-projects/modules. | // Top-level build file where you can add configuration options common to all sub-projects/modules. | ||||
plugins { | plugins { | ||||
id 'com.android.application' version '7.4.2' apply false | |||||
id 'com.android.library' version '7.4.2' apply false | |||||
id 'com.android.application' version '8.0.0' apply false | |||||
id 'com.android.library' version '8.0.0' apply false | |||||
} | } |
# Enables namespacing of each library's R class so that its R class includes only the | # Enables namespacing of each library's R class so that its R class includes only the | ||||
# resources declared in the library itself and none from the library's dependencies, | # resources declared in the library itself and none from the library's dependencies, | ||||
# thereby reducing the size of the R class for that library | # thereby reducing the size of the R class for that library | ||||
android.nonTransitiveRClass=true | |||||
android.nonTransitiveRClass=true | |||||
android.defaults.buildfeatures.buildconfig=true | |||||
android.nonFinalResIds=false |
#Thu May 11 15:04:30 CEST 2023 | #Thu May 11 15:04:30 CEST 2023 | ||||
distributionBase=GRADLE_USER_HOME | distributionBase=GRADLE_USER_HOME | ||||
distributionUrl=https\://services.gradle.org/distributions/gradle-7.5-bin.zip | |||||
distributionUrl=https\://services.gradle.org/distributions/gradle-8.0-bin.zip | |||||
distributionPath=wrapper/dists | distributionPath=wrapper/dists | ||||
zipStorePath=wrapper/dists | zipStorePath=wrapper/dists | ||||
zipStoreBase=GRADLE_USER_HOME | zipStoreBase=GRADLE_USER_HOME |