Compare commits

...

8 Commits

Author SHA1 Message Date
55ae95e661 Merge of MicrophoneDetector 2023-06-20 21:58:09 +02:00
8e47934beb Merge branch 'tw' into master
# Conflicts:
#	app/build.gradle
#	app/src/main/AndroidManifest.xml
#	app/src/main/java/com/example/ueberwachungssystem/MainActivity.java
#	app/src/main/res/layout/activity_main.xml
#	gradle.properties
2023-06-20 21:42:25 +02:00
c60a14b6ac Clean project for merge 2023-06-20 21:37:17 +02:00
4381ae78f8 Commit before cleaning project for merge (minor changes) 2023-06-20 21:16:18 +02:00
81e04e370a Commit before cleaning project for merge 2023-06-20 21:04:33 +02:00
b94a1d98b7 Working detection with calibration and dB signals. FFT also implemented, but does not work properly at the moment. (Added Complex class, FFT class and imported jjoe64 Graphview (in gradle and gradle.properties) for visualising FFT results) 2023-06-16 16:49:20 +02:00
7c8610facb Move from Mikrofon to MicrophoneDetector class and add of abstract Detector class 2023-05-25 16:58:08 +02:00
unknown
90a2aad491 new class Mikrofon 2023-05-11 16:21:59 +02:00
3 changed files with 813 additions and 0 deletions

View File

@ -0,0 +1,419 @@
package com.example.ueberwachungssystem.Detection;
import static java.lang.Math.*;
import android.Manifest;
import android.app.Activity;
import android.content.Context;
import android.content.pm.PackageManager;
import android.media.AudioFormat;
import android.media.AudioRecord;
import android.media.MediaRecorder;
import android.os.AsyncTask;
import android.util.Log;
import androidx.core.app.ActivityCompat;
import androidx.core.content.ContextCompat;
import com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex;
import com.example.ueberwachungssystem.Detection.Signalverarbeitung.FFT;
import com.example.ueberwachungssystem.Detector.DetectionReport;
import com.example.ueberwachungssystem.Detector.Detector;
public class MicrophoneDetector extends Detector {
/**
* Constructor - takes context of current activity
*
* @param context
*/
private static final int RECHTEANFORDERUNG_MIKROFON = 1;
private AufnahmeTask aufnahmeTask;
public boolean armed = false;
public int Schwellwert_Alarm = 100;
private Activity MainActivityForClass;
public MicrophoneDetector(Context context) {
super(context);
MainActivityForClass = (Activity) context;
if (!istZugriffAufMikrofonErlaubt()) {
zugriffAufMikrofonAnfordern();
}
}
@Override
public void startDetection() {
if (!istZugriffAufMikrofonErlaubt()) {
zugriffAufMikrofonAnfordern();
}
if (istZugriffAufMikrofonErlaubt()) {
aufnahmeTask = new AufnahmeTask();
aufnahmeTask.execute();
}
}
@Override
public void stopDetection() {
if (aufnahmeTask != null) {
aufnahmeTask.cancel(true);
}
}
private boolean istZugriffAufMikrofonErlaubt() {
if (ContextCompat.checkSelfPermission(MainActivityForClass, android.Manifest.permission.RECORD_AUDIO) != PackageManager.PERMISSION_GRANTED) {
Log.d("0","Zugriff auf Mikrofon ist verboten.");
return false;
} else {
Log.d("0","Zugriff auf Mikrofon ist erlaubt.");
return true;
}
}
private void zugriffAufMikrofonAnfordern() {
ActivityCompat.requestPermissions(MainActivityForClass, new String[]{Manifest.permission.RECORD_AUDIO}, RECHTEANFORDERUNG_MIKROFON);
}
class AufnahmeTask extends AsyncTask<Long, Verarbeitungsergebnis, Void> {
private AudioRecord recorder;
private final int sampleRateInHz = 44100;
private final int channelConfig = AudioFormat.CHANNEL_IN_MONO;
private final int audioFormat = AudioFormat.ENCODING_PCM_16BIT;
private int minPufferGroesseInBytes;
private int pufferGroesseInBytes;
private RingPuffer ringPuffer = new RingPuffer(10);
private float kalibierWert;
private com.example.ueberwachungssystem.Detector.DetectionReport detectionReport;
AufnahmeTask() {
minPufferGroesseInBytes = AudioRecord.getMinBufferSize(sampleRateInHz, channelConfig, audioFormat);
pufferGroesseInBytes = minPufferGroesseInBytes * 2;
if (ActivityCompat.checkSelfPermission(MainActivityForClass, Manifest.permission.RECORD_AUDIO) != PackageManager.PERMISSION_GRANTED) {
// TODO: Consider calling
// ActivityCompat#requestPermissions
// here to request the missing permissions, and then overriding
// public void onRequestPermissionsResult(int requestCode, String[] permissions,
// int[] grantResults)
// to handle the case where the user grants the permission. See the documentation
// for ActivityCompat#requestPermissions for more details.
ActivityCompat.requestPermissions(MainActivityForClass, new String[]{Manifest.permission.RECORD_AUDIO}, RECHTEANFORDERUNG_MIKROFON);
}
recorder = new AudioRecord(MediaRecorder.AudioSource.MIC, sampleRateInHz, channelConfig, audioFormat, pufferGroesseInBytes);
Log.d("0","Puffergroeße: "+ minPufferGroesseInBytes + " " + pufferGroesseInBytes);
Log.d("0","Recorder (SR, CH): "+ recorder.getSampleRate() + " " + recorder.getChannelCount());
int anzahlBytesProAbtastwert;
String s;
switch (recorder.getAudioFormat()) {
case AudioFormat.ENCODING_PCM_8BIT:
s = "8 Bit PCM ";
anzahlBytesProAbtastwert = 1;
break;
case AudioFormat.ENCODING_PCM_16BIT:
s = "16 Bit PCM";
anzahlBytesProAbtastwert = 2;
break;
case AudioFormat.ENCODING_PCM_FLOAT:
s = "Float PCM";
anzahlBytesProAbtastwert = 4;
break;
default:
throw new IllegalArgumentException();
}
switch (recorder.getChannelConfiguration()) {
case AudioFormat.CHANNEL_IN_MONO:
s = "Mono";
break;
case AudioFormat.CHANNEL_IN_STEREO:
s = "Stereo";
anzahlBytesProAbtastwert *= 2;
break;
case AudioFormat.CHANNEL_INVALID:
s = "ungültig";
break;
default:
throw new IllegalArgumentException();
}
Log.d("0","Konfiguration: "+ s);
int pufferGroesseInAnzahlAbtastwerten = pufferGroesseInBytes / anzahlBytesProAbtastwert;
int pufferGroesseInMillisekunden = 1000 * pufferGroesseInAnzahlAbtastwerten / recorder.getSampleRate();
}
@Override
protected Void doInBackground(Long... params) {
recorder.startRecording();
short[] puffer = new short[pufferGroesseInBytes / 2];
long lastTime = System.currentTimeMillis();
float verarbeitungsrate = 0;
final int maxZaehlerZeitMessung = 10;
int zaehlerZeitMessung = 0;
int anzahlVerarbeitet = 0;
GleitenderMittelwert gleitenderMittelwert = new GleitenderMittelwert(0.3f);
//Kalibrierung
try {
Thread.sleep(3000); // Time to lay down the phone
} catch (InterruptedException e) {
e.printStackTrace();
}
int i = 0;
for (i = 0; i < 20; i++) {
int n = recorder.read(puffer, 0, puffer.length);
Verarbeitungsergebnis kalibrierErgebnis = verarbeiten(puffer, n);
kalibierWert += kalibrierErgebnis.maxAmp;
try {
Thread.sleep(50);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
kalibierWert = kalibierWert/i;
// __Part of FFT__
// Complex[] zeitSignal = new Complex[puffer.length];
// for (int j = 0; j < puffer.length; j++) {
// zeitSignal[j] = new Complex(puffer[j], 0);
// }
// Complex[] spektrum = FFT.fft(zeitSignal);
// double[] spektrum = calculateFFT(puffer);
// DataPoint AddPoint;
// LineGraphSeries<DataPoint> series = new LineGraphSeries<DataPoint>(new DataPoint[]{});
// for (i = 0; i < spektrum.length; i++) {
// AddPoint = new DataPoint(i, spektrum[i]);
// series.appendData(AddPoint, true, spektrum.length);
// }
// graph.addSeries(series);
for (; ; ) {
if (aufnahmeTask.isCancelled()) {
break;
} else {
int n = recorder.read(puffer, 0, puffer.length);
Verarbeitungsergebnis ergebnis = verarbeiten(puffer, n);
anzahlVerarbeitet += n;
// __Part of FFT__
// spektrum = calculateFFT(puffer);
// LineGraphSeries<DataPoint> newseries = new LineGraphSeries<DataPoint>(new DataPoint[]{});
// for (i = 0; i < spektrum.length; i++) {
// AddPoint = new DataPoint(i, spektrum[i]);
// newseries.appendData(AddPoint, true, spektrum.length);
// }
zaehlerZeitMessung++;
if (zaehlerZeitMessung == maxZaehlerZeitMessung) {
long time = System.currentTimeMillis();
long deltaTime = time - lastTime;
verarbeitungsrate = 1000.0f * anzahlVerarbeitet / deltaTime;
verarbeitungsrate = gleitenderMittelwert.mittel(verarbeitungsrate);
zaehlerZeitMessung = 0;
anzahlVerarbeitet = 0;
lastTime = time;
}
ergebnis.verarbeitungsrate = (int) verarbeitungsrate;
publishProgress(ergebnis);
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
recorder.release();
return null;
}
private Verarbeitungsergebnis verarbeiten(short[] daten, int n) {
String status;
short maxAmp = -1;
if (n == AudioRecord.ERROR_INVALID_OPERATION) {
status = "ERROR_INVALID_OPERATION";
} else if (n == AudioRecord.ERROR_BAD_VALUE) {
status = "ERROR_BAD_VALUE";
} else {
status = "OK";
short max = 0;
for (int i = 0; i < n; i++) {
if (daten[i] > max) {
max = daten[i];
}
}
ringPuffer.hinzufuegen(max);
maxAmp = ringPuffer.maximum();
if (maxAmp <= Schwellwert_Alarm+kalibierWert) {
armed = true;
}
}
return new Verarbeitungsergebnis(status, maxAmp, 0);
}
@Override
protected void onProgressUpdate(Verarbeitungsergebnis... progress) {
super.onProgressUpdate(progress);
float maxAmpPrint = round(20*log10(abs(progress[0].maxAmp/1.0)));
float kalibierWertPrint = round(20*log10(abs(kalibierWert)));
Log.d("0","VR, Max, Kal:" + progress[0].verarbeitungsrate + ", " + maxAmpPrint
+ " dB, " + kalibierWertPrint + " dB");
if (progress[0].maxAmp >= Schwellwert_Alarm+kalibierWert && armed == true) {
armed = false;
detectionReport = new DetectionReport("Mic1", "Audio", maxAmpPrint);
reportViolation("Mic1", "Audio", maxAmpPrint);
Log.d("1",detectionReport.toString());
}
}
}
private double[] calculateFFT(short[] zeitsignal)
{
byte signal[] = new byte[zeitsignal.length];
// loops through all the values of a Short
for (int i = 0; i < zeitsignal.length-1; i++) {
signal[i] = (byte) (zeitsignal[i]);
signal[i+1] = (byte) (zeitsignal[i] >> 8);
}
final int mNumberOfFFTPoints =1024;
double mMaxFFTSample;
double temp;
Complex[] y;
Complex[] complexSignal = new Complex[mNumberOfFFTPoints];
double[] absSignal = new double[mNumberOfFFTPoints/2];
for(int i = 0; i < mNumberOfFFTPoints; i++){
temp = (double)((signal[2*i] & 0xFF) | (signal[2*i+1] << 8)) / 32768.0F;
complexSignal[i] = new Complex(temp,0.0);
}
y = FFT.fft(complexSignal);
mMaxFFTSample = 0.0;
for(int i = 0; i < (mNumberOfFFTPoints/2); i++)
{
absSignal[i] = y[i].abs();
// absSignal[i] = Math.sqrt(Math.pow(y[i].re(), 2) + Math.pow(y[i].im(), 2));
// if(absSignal[i] > mMaxFFTSample)
// {
// mMaxFFTSample = absSignal[i];
// }
}
return absSignal;
}
class Verarbeitungsergebnis {
String status;
short maxAmp;
int verarbeitungsrate;
Verarbeitungsergebnis(String status, short maxAmp, int verarbeitungsrate) {
this.status = status;
this.maxAmp = maxAmp;
this.verarbeitungsrate = verarbeitungsrate;
}
}
class RingPuffer {
private short[] puffer;
private final int laenge;
private int anzahlEnthaltenerDaten;
private int position;
public RingPuffer(int n) {
laenge = n;
anzahlEnthaltenerDaten = 0;
position = 0;
puffer = new short[laenge];
}
public void hinzufuegen(short wert) {
puffer[position] = wert;
position++;
if (position >= laenge) {
position = 0;
}
if (anzahlEnthaltenerDaten < laenge) {
anzahlEnthaltenerDaten++;
}
}
public void hinzufuegen(short[] daten) {
for (short d : daten) {
puffer[position] = d;
position++;
if (position >= laenge) {
position = 0;
}
}
if (anzahlEnthaltenerDaten < laenge) {
anzahlEnthaltenerDaten += daten.length;
if (anzahlEnthaltenerDaten >= laenge) {
anzahlEnthaltenerDaten = laenge;
}
}
}
public short maximum() {
short max = 0;
for (int i = 0; i < anzahlEnthaltenerDaten; i++) {
if (puffer[i] > max) {
max = puffer[i];
}
}
return max;
}
public float mittelwert() {
float summe = 0;
for (int i = 0; i < anzahlEnthaltenerDaten; i++) {
summe += puffer[i];
}
return summe / anzahlEnthaltenerDaten;
}
}
class GleitenderMittelwert {
private final float wichtungNeuerWert;
private final float wichtungAlterWert;
private float mittelwert = 0;
private boolean istMittelwertGesetzt = false;
GleitenderMittelwert(float wichtungNeuerWert) {
this.wichtungNeuerWert = wichtungNeuerWert;
this.wichtungAlterWert = 1 - this.wichtungNeuerWert;
}
float MittelwertPuffer(short[] puffer) {
for (int i = 0; i < puffer.length; i++) {
mittelwert = Math.abs(puffer[i]);
}
mittelwert = mittelwert/puffer.length;
return mittelwert;
}
float mittel(float wert) {
if (istMittelwertGesetzt) {
mittelwert = wert * wichtungNeuerWert + mittelwert * wichtungAlterWert;
} else {
mittelwert = wert;
istMittelwertGesetzt = true;
}
return mittelwert;
}
}
}

View File

@ -0,0 +1,148 @@
package com.example.ueberwachungssystem.Detection.Signalverarbeitung;
import java.util.Objects;
public class Complex {
private final double re; // the real part
private final double im; // the imaginary part
// create a new object with the given real and imaginary parts
public Complex(double real, double imag) {
re = real;
im = imag;
}
// return a string representation of the invoking com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object
public String toString() {
if (im == 0) return re + "";
if (re == 0) return im + "i";
if (im < 0) return re + " - " + (-im) + "i";
return re + " + " + im + "i";
}
// return abs/modulus/magnitude
public double abs() {
return Math.hypot(re, im);
}
// return angle/phase/argument, normalized to be between -pi and pi
public double phase() {
return Math.atan2(im, re);
}
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this + b)
public Complex plus(Complex b) {
Complex a = this; // invoking object
double real = a.re + b.re;
double imag = a.im + b.im;
return new Complex(real, imag);
}
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this - b)
public Complex minus(Complex b) {
Complex a = this;
double real = a.re - b.re;
double imag = a.im - b.im;
return new Complex(real, imag);
}
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this * b)
public Complex times(Complex b) {
Complex a = this;
double real = a.re * b.re - a.im * b.im;
double imag = a.re * b.im + a.im * b.re;
return new Complex(real, imag);
}
// return a new object whose value is (this * alpha)
public Complex scale(double alpha) {
return new Complex(alpha * re, alpha * im);
}
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the conjugate of this
public Complex conjugate() {
return new Complex(re, -im);
}
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the reciprocal of this
public Complex reciprocal() {
double scale = re * re + im * im;
return new Complex(re / scale, -im / scale);
}
// return the real or imaginary part
public double re() {
return re;
}
public double im() {
return im;
}
// return a / b
public Complex divides(Complex b) {
Complex a = this;
return a.times(b.reciprocal());
}
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex exponential of this
public Complex exp() {
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
}
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex sine of this
public Complex sin() {
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
}
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex cosine of this
public Complex cos() {
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
}
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex tangent of this
public Complex tan() {
return sin().divides(cos());
}
// a static version of plus
public static Complex plus(Complex a, Complex b) {
double real = a.re + b.re;
double imag = a.im + b.im;
Complex sum = new Complex(real, imag);
return sum;
}
// See Section 3.3.
public boolean equals(Object x) {
if (x == null) return false;
if (this.getClass() != x.getClass()) return false;
Complex that = (Complex) x;
return (this.re == that.re) && (this.im == that.im);
}
// See Section 3.3.
public int hashCode() {
return Objects.hash(re, im);
}
// sample client for testing
public static void main(String[] args) {
Complex a = new Complex(5.0, 6.0);
Complex b = new Complex(-3.0, 4.0);
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("Re(a) = " + a.re());
System.out.println("Im(a) = " + a.im());
System.out.println("b + a = " + b.plus(a));
System.out.println("a - b = " + a.minus(b));
System.out.println("a * b = " + a.times(b));
System.out.println("b * a = " + b.times(a));
System.out.println("a / b = " + a.divides(b));
System.out.println("(a / b) * b = " + a.divides(b).times(b));
System.out.println("conj(a) = " + a.conjugate());
System.out.println("|a| = " + a.abs());
System.out.println("tan(a) = " + a.tan());
}
}

View File

@ -0,0 +1,246 @@
package com.example.ueberwachungssystem.Detection.Signalverarbeitung;
// Source: https://introcs.cs.princeton.edu/java/97data/FFT.java.html
/******************************************************************************
* Compilation: javac FFT.java
* Execution: java FFT n
* Dependencies: com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex.java
*
* Compute the FFT and inverse FFT of a length n complex sequence
* using the radix 2 Cooley-Tukey algorithm.
* Bare bones implementation that runs in O(n log n) time and O(n)
* space. Our goal is to optimize the clarity of the code, rather
* than performance.
*
* This implementation uses the primitive root of unity w = e^(-2 pi i / n).
* Some resources use w = e^(2 pi i / n).
*
* Reference: https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII.pdf
*
* Limitations
* -----------
* - assumes n is a power of 2
*
* - not the most memory efficient algorithm (because it uses
* an object type for representing complex numbers and because
* it re-allocates memory for the subarray, instead of doing
* in-place or reusing a single temporary array)
*
* For an in-place radix 2 Cooley-Tukey FFT, see
* https://introcs.cs.princeton.edu/java/97data/InplaceFFT.java.html
*
******************************************************************************/
public class FFT {
// compute the FFT of x[], assuming its length n is a power of 2
public static Complex[] fft(Complex[] x) {
int n = x.length;
// base case
if (n == 1) return new Complex[]{x[0]};
// radix 2 Cooley-Tukey FFT
if (n % 2 != 0) {
throw new IllegalArgumentException("n is not a power of 2");
}
// compute FFT of even terms
Complex[] even = new Complex[n / 2];
for (int k = 0; k < n / 2; k++) {
even[k] = x[2 * k];
}
Complex[] evenFFT = fft(even);
// compute FFT of odd terms
Complex[] odd = even; // reuse the array (to avoid n log n space)
for (int k = 0; k < n / 2; k++) {
odd[k] = x[2 * k + 1];
}
Complex[] oddFFT = fft(odd);
// combine
Complex[] y = new Complex[n];
for (int k = 0; k < n / 2; k++) {
double kth = -2 * k * Math.PI / n;
Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = evenFFT[k].plus(wk.times(oddFFT[k]));
y[k + n / 2] = evenFFT[k].minus(wk.times(oddFFT[k]));
}
return y;
}
// compute the inverse FFT of x[], assuming its length n is a power of 2
public static Complex[] ifft(Complex[] x) {
int n = x.length;
Complex[] y = new Complex[n];
// take conjugate
for (int i = 0; i < n; i++) {
y[i] = x[i].conjugate();
}
// compute forward FFT
y = fft(y);
// take conjugate again
for (int i = 0; i < n; i++) {
y[i] = y[i].conjugate();
}
// divide by n
for (int i = 0; i < n; i++) {
y[i] = y[i].scale(1.0 / n);
}
return y;
}
// compute the circular convolution of x and y
public static Complex[] cconvolve(Complex[] x, Complex[] y) {
// should probably pad x and y with 0s so that they have same length
// and are powers of 2
if (x.length != y.length) {
throw new IllegalArgumentException("Dimensions don't agree");
}
int n = x.length;
// compute FFT of each sequence
Complex[] a = fft(x);
Complex[] b = fft(y);
// point-wise multiply
Complex[] c = new Complex[n];
for (int i = 0; i < n; i++) {
c[i] = a[i].times(b[i]);
}
// compute inverse FFT
return ifft(c);
}
// compute the linear convolution of x and y
public static Complex[] convolve(Complex[] x, Complex[] y) {
Complex ZERO = new Complex(0, 0);
Complex[] a = new Complex[2 * x.length];
for (int i = 0; i < x.length; i++) a[i] = x[i];
for (int i = x.length; i < 2 * x.length; i++) a[i] = ZERO;
Complex[] b = new Complex[2 * y.length];
for (int i = 0; i < y.length; i++) b[i] = y[i];
for (int i = y.length; i < 2 * y.length; i++) b[i] = ZERO;
return cconvolve(a, b);
}
// compute the DFT of x[] via brute force (n^2 time)
public static Complex[] dft(Complex[] x) {
int n = x.length;
Complex ZERO = new Complex(0, 0);
Complex[] y = new Complex[n];
for (int k = 0; k < n; k++) {
y[k] = ZERO;
for (int j = 0; j < n; j++) {
int power = (k * j) % n;
double kth = -2 * power * Math.PI / n;
Complex wkj = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = y[k].plus(x[j].times(wkj));
}
}
return y;
}
// display an array of com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex numbers to standard output
public static void show(Complex[] x, String title) {
System.out.println(title);
System.out.println("-------------------");
for (int i = 0; i < x.length; i++) {
System.out.println(x[i]);
}
System.out.println();
}
/***************************************************************************
* Test client and sample execution
*
* % java FFT 4
* x
* -------------------
* -0.03480425839330703
* 0.07910192950176387
* 0.7233322451735928
* 0.1659819820667019
*
* y = fft(x)
* -------------------
* 0.9336118983487516
* -0.7581365035668999 + 0.08688005256493803i
* 0.44344407521182005
* -0.7581365035668999 - 0.08688005256493803i
*
* z = ifft(y)
* -------------------
* -0.03480425839330703
* 0.07910192950176387 + 2.6599344570851287E-18i
* 0.7233322451735928
* 0.1659819820667019 - 2.6599344570851287E-18i
*
* c = cconvolve(x, x)
* -------------------
* 0.5506798633981853
* 0.23461407150576394 - 4.033186818023279E-18i
* -0.016542951108772352
* 0.10288019294318276 + 4.033186818023279E-18i
*
* d = convolve(x, x)
* -------------------
* 0.001211336402308083 - 3.122502256758253E-17i
* -0.005506167987577068 - 5.058885073636224E-17i
* -0.044092969479563274 + 2.1934338938072244E-18i
* 0.10288019294318276 - 3.6147323062478115E-17i
* 0.5494685269958772 + 3.122502256758253E-17i
* 0.240120239493341 + 4.655566391833896E-17i
* 0.02755001837079092 - 2.1934338938072244E-18i
* 4.01805098805014E-17i
*
***************************************************************************/
public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
Complex[] x = new Complex[n];
// original data
for (int i = 0; i < n; i++) {
x[i] = new Complex(i, 0);
}
show(x, "x");
// FFT of original data
Complex[] y = fft(x);
show(y, "y = fft(x)");
// FFT of original data
Complex[] y2 = dft(x);
show(y2, "y2 = dft(x)");
// take inverse FFT
Complex[] z = ifft(y);
show(z, "z = ifft(y)");
// circular convolution of x with itself
Complex[] c = cconvolve(x, x);
show(c, "c = cconvolve(x, x)");
// linear convolution of x with itself
Complex[] d = convolve(x, x);
show(d, "d = convolve(x, x)");
}
}