Fertisch
This commit is contained in:
parent
52dc266ad7
commit
c6f9776cd7
@ -1,11 +1,9 @@
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "unity.h"
|
||||
#include "imageInput.h"
|
||||
|
||||
|
||||
static void prepareImageFile(const char *path, unsigned short int width, unsigned short int height, unsigned int short numberOfImages, unsigned char label)
|
||||
{
|
||||
FILE *file = fopen(path, "wb");
|
||||
@ -13,29 +11,33 @@ static void prepareImageFile(const char *path, unsigned short int width, unsigne
|
||||
if (file != NULL)
|
||||
{
|
||||
const char *fileTag = "__info2_image_file_format__";
|
||||
GrayScalePixelType *zeroBuffer = (GrayScalePixelType *)calloc(numberOfImages * width * height, sizeof(GrayScalePixelType));
|
||||
GrayScalePixelType *buffer = (GrayScalePixelType *)calloc(numberOfImages * width * height, sizeof(GrayScalePixelType));
|
||||
|
||||
if(zeroBuffer != NULL)
|
||||
if (buffer != NULL)
|
||||
{
|
||||
fwrite(fileTag, sizeof(fileTag[0]), strlen(fileTag), file);
|
||||
for (int i = 0; i < width * height; i++)
|
||||
{
|
||||
buffer[i] = (GrayScalePixelType)i; // füllen des buffers mit Graustufen des Pixel für Test
|
||||
}
|
||||
|
||||
fwrite(fileTag, 1, strlen(fileTag), file);
|
||||
fwrite(&numberOfImages, sizeof(numberOfImages), 1, file);
|
||||
fwrite(&width, sizeof(width), 1, file);
|
||||
fwrite(&height, sizeof(height), 1, file);
|
||||
|
||||
for (int i = 0; i < numberOfImages; i++)
|
||||
{
|
||||
fwrite(zeroBuffer, sizeof(GrayScalePixelType), width * height, file);
|
||||
fwrite(buffer, sizeof(GrayScalePixelType), width * height, file);
|
||||
fwrite(&label, sizeof(unsigned char), 1, file);
|
||||
}
|
||||
|
||||
free(zeroBuffer);
|
||||
free(buffer);
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void test_readImagesReturnsCorrectNumberOfImages(void)
|
||||
{
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
@ -92,7 +94,8 @@ void test_readImagesReturnsCorrectLabels(void)
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->labels);
|
||||
TEST_ASSERT_EQUAL_UINT16(2, series->count);
|
||||
for (int i = 0; i < 2; i++) {
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
TEST_ASSERT_EQUAL_UINT8(expectedLabel, series->labels[i]);
|
||||
}
|
||||
clearSeries(series);
|
||||
@ -119,11 +122,36 @@ void test_readImagesFailsOnWrongFileTag(void)
|
||||
remove(path);
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
// Test der Hilfsfunktionen
|
||||
|
||||
void test_read_GrayScale_Pixel(void)
|
||||
{
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const char *path = "testFile.info2";
|
||||
|
||||
prepareImageFile(path, 8, 8, 1, 1);
|
||||
series = readImages(path);
|
||||
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->images);
|
||||
TEST_ASSERT_EQUAL_UINT16(1, series->count);
|
||||
|
||||
for (int i = 0; i < (8 * 8); i++)
|
||||
{
|
||||
TEST_ASSERT_EQUAL_UINT8((GrayScalePixelType)i, series->images->buffer[i]);
|
||||
}
|
||||
|
||||
clearSeries(series);
|
||||
remove(path);
|
||||
}
|
||||
|
||||
void setUp(void)
|
||||
{
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void) {
|
||||
void tearDown(void)
|
||||
{
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
@ -138,6 +166,7 @@ int main()
|
||||
RUN_TEST(test_readImagesReturnsCorrectLabels);
|
||||
RUN_TEST(test_readImagesReturnsNullOnNotExistingPath);
|
||||
RUN_TEST(test_readImagesFailsOnWrongFileTag);
|
||||
RUN_TEST(test_read_GrayScale_Pixel);
|
||||
|
||||
return UNITY_END();
|
||||
}
|
||||
4
matrix.h
4
matrix.h
@ -11,8 +11,8 @@ typedef struct Matrix
|
||||
{
|
||||
unsigned int rows;
|
||||
unsigned int cols;
|
||||
MatrixType *data;
|
||||
#define buffer data
|
||||
MatrixType *buffer;
|
||||
|
||||
} Matrix;
|
||||
|
||||
|
||||
|
||||
@ -170,7 +170,7 @@ NeuralNetwork loadModel(const char *path)
|
||||
|
||||
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
|
||||
{
|
||||
Matrix matrix = {NULL, 0, 0};
|
||||
Matrix matrix = {0, 0, NULL};
|
||||
|
||||
if(count > 0 && images != NULL)
|
||||
{
|
||||
|
||||
@ -5,10 +5,49 @@
|
||||
#include "unity.h"
|
||||
#include "neuralNetwork.h"
|
||||
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
// TODO
|
||||
FILE *f = fopen(path, "wb");
|
||||
if (!f) return;
|
||||
|
||||
const char *tag = "__info2_neural_network_file_format__";
|
||||
fwrite(tag, 1, strlen(tag), f);
|
||||
|
||||
if (nn.numberOfLayers == 0) {
|
||||
fclose(f);
|
||||
return;
|
||||
} // In localmodel Struktur Testdateu aufruf:
|
||||
// Header --> Input Dim --> Output Dim
|
||||
// i. Layer weights --> biases --> nächste Dim
|
||||
|
||||
|
||||
int input = nn.layers[0].weights.cols;
|
||||
int output = nn.layers[0].weights.rows;
|
||||
|
||||
fwrite(&input, sizeof(int), 1, f);
|
||||
fwrite(&output, sizeof(int), 1, f);
|
||||
|
||||
for (int i = 0; i < nn.numberOfLayers; i++)
|
||||
{
|
||||
const Layer *layer = &nn.layers[i];
|
||||
int out = layer->weights.rows;
|
||||
int in = layer->weights.cols;
|
||||
|
||||
|
||||
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, f);
|
||||
|
||||
|
||||
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, f);
|
||||
|
||||
|
||||
if (i + 1 < nn.numberOfLayers)
|
||||
{
|
||||
int nextOut = nn.layers[i + 1].weights.rows;
|
||||
fwrite(&nextOut, sizeof(int), 1, f);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(f);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
@ -205,8 +244,8 @@ void test_predictReturnsCorrectLabels(void)
|
||||
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
|
||||
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
|
||||
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
||||
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
||||
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
|
||||
{.weights = weights2, .biases = biases2, .activation = someActivation},
|
||||
{.weights = weights3, .biases = biases3, .activation = someActivation}};
|
||||
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
|
||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||
@ -216,11 +255,13 @@ void test_predictReturnsCorrectLabels(void)
|
||||
free(predictedLabels);
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
void setUp(void)
|
||||
{
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void) {
|
||||
void tearDown(void)
|
||||
{
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user