generated from freudenreichan/info2Praktikum-NeuronalesNetz
54 lines
1.1 KiB
C
54 lines
1.1 KiB
C
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "matrix.h"
|
|
|
|
// TODO Matrix-Funktionen implementieren
|
|
|
|
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
|
{
|
|
if(rows <= 0 || cols <= 0){
|
|
Matrix matrix = { 0 , 0 , UNDEFINED_MATRIX_VALUE };
|
|
return matrix;
|
|
}
|
|
|
|
Matrix matrix = { rows , cols };
|
|
|
|
matrix.buffer = malloc((sizeof(MatrixType)*rows*cols));
|
|
|
|
return matrix;
|
|
}
|
|
|
|
void clearMatrix(Matrix *matrix)
|
|
{
|
|
free(matrix->buffer);
|
|
|
|
matrix->buffer = NULL;
|
|
matrix->rows = 0;
|
|
matrix->cols = 0;
|
|
}
|
|
|
|
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
*(matrix.buffer + (rowIdx * matrix.cols + colIdx)) = value;
|
|
|
|
}
|
|
|
|
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
if(matrix.rows <= rowIdx || matrix.cols <= colIdx)
|
|
return UNDEFINED_MATRIX_VALUE;
|
|
|
|
MatrixType value;
|
|
value = *(matrix.buffer + (rowIdx * matrix.cols + colIdx));
|
|
return value;
|
|
}
|
|
|
|
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
return matrix1;
|
|
}
|
|
|
|
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
return matrix1;
|
|
} |