forked from freudenreichan/info2Praktikum-NeuronalesNetz
Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/turtschinba100320/info2Praktikum-NeuronalesNetzBastiBjoern
This commit is contained in:
commit
545acd0356
21
matrix.c
21
matrix.c
@ -8,19 +8,20 @@
|
|||||||
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
||||||
{
|
{
|
||||||
Matrix matrix;
|
Matrix matrix;
|
||||||
matrix.rows = rows;
|
|
||||||
matrix.cols = cols;
|
|
||||||
|
|
||||||
if (rows == 0 || cols == 0) {
|
|
||||||
matrix.buffer = NULL;
|
matrix.buffer = NULL;
|
||||||
return matrix;
|
|
||||||
}
|
|
||||||
|
|
||||||
matrix.buffer = (MatrixType *)malloc(rows * cols * sizeof(MatrixType));
|
|
||||||
if (matrix.buffer == NULL)
|
|
||||||
{
|
|
||||||
matrix.rows = 0;
|
matrix.rows = 0;
|
||||||
matrix.cols = 0;
|
matrix.cols = 0;
|
||||||
|
|
||||||
|
|
||||||
|
// Wenn die Dimensionen gültig sind, Speicher reservieren
|
||||||
|
if (rows > 0 && cols > 0)
|
||||||
|
{
|
||||||
|
matrix.buffer = (MatrixType *)malloc(rows * cols * sizeof(MatrixType));
|
||||||
|
if (matrix.buffer != NULL)
|
||||||
|
{
|
||||||
|
matrix.rows = rows;
|
||||||
|
matrix.cols = cols;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
return matrix;
|
return matrix;
|
||||||
}
|
}
|
||||||
|
|||||||
3
matrix.h
3
matrix.h
@ -8,9 +8,10 @@ typedef float MatrixType;
|
|||||||
// TODO Matrixtyp definieren
|
// TODO Matrixtyp definieren
|
||||||
typedef struct
|
typedef struct
|
||||||
{
|
{
|
||||||
|
MatrixType *buffer;
|
||||||
unsigned int rows;
|
unsigned int rows;
|
||||||
unsigned int cols;
|
unsigned int cols;
|
||||||
MatrixType *buffer;
|
|
||||||
} Matrix;
|
} Matrix;
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -8,7 +8,58 @@
|
|||||||
|
|
||||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||||
{
|
{
|
||||||
// TODO
|
// TODO : Fehlerbehandlung
|
||||||
|
// Öffne die Datei zum Schreiben im Binärmodus
|
||||||
|
FILE *file = fopen(path, "wb");
|
||||||
|
if (!file) return;
|
||||||
|
|
||||||
|
// Schreibe den Datei-Tag
|
||||||
|
const char *tag = "__info2_neural_network_file_format__";
|
||||||
|
fwrite(tag, 1, strlen(tag), file);
|
||||||
|
|
||||||
|
// Schreibe die Anzahl der Layer
|
||||||
|
if (nn.numberOfLayers == 0) {
|
||||||
|
fclose(file);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
|
||||||
|
int input = nn.layers[0].weights.cols;
|
||||||
|
int output = nn.layers[0].weights.rows;
|
||||||
|
|
||||||
|
fwrite(&input, sizeof(int), 1, file);
|
||||||
|
fwrite(&output, sizeof(int), 1, file);
|
||||||
|
|
||||||
|
// Schreibe die Layer-Daten
|
||||||
|
for (int i = 0; i < nn.numberOfLayers; i++)
|
||||||
|
{
|
||||||
|
const Layer *layer = &nn.layers[i];
|
||||||
|
int out = layer->weights.rows;
|
||||||
|
int in = layer->weights.cols;
|
||||||
|
|
||||||
|
|
||||||
|
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
|
||||||
|
|
||||||
|
|
||||||
|
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
|
||||||
|
|
||||||
|
if (i + 1 < nn.numberOfLayers)
|
||||||
|
{
|
||||||
|
int nextOut = nn.layers[i + 1].weights.rows;
|
||||||
|
fwrite(&nextOut, sizeof(int), 1, file);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fclose(file);
|
||||||
|
|
||||||
|
// Debuging-Ausgabe
|
||||||
|
printf("prepareNeuralNetworkFile: Datei '%s' erstellt mit %u Layer(n)\n", path, nn.numberOfLayers);
|
||||||
|
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
|
||||||
|
Layer layer = nn.layers[i];
|
||||||
|
printf("Layer %u: weights (%u x %u), biases (%u x %u)\n",
|
||||||
|
i, layer.weights.rows, layer.weights.cols, layer.biases.rows, layer.biases.cols);
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user