forked from freudenreichan/info2Praktikum-NeuronalesNetz
Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/turtschinba100320/info2Praktikum-NeuronalesNetzBastiBjoern
This commit is contained in:
commit
545acd0356
21
matrix.c
21
matrix.c
@ -8,19 +8,20 @@
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
||||
{
|
||||
Matrix matrix;
|
||||
matrix.rows = rows;
|
||||
matrix.cols = cols;
|
||||
matrix.buffer = NULL;
|
||||
matrix.rows = 0;
|
||||
matrix.cols = 0;
|
||||
|
||||
if (rows == 0 || cols == 0) {
|
||||
matrix.buffer = NULL;
|
||||
return matrix;
|
||||
}
|
||||
|
||||
matrix.buffer = (MatrixType *)malloc(rows * cols * sizeof(MatrixType));
|
||||
if (matrix.buffer == NULL)
|
||||
// Wenn die Dimensionen gültig sind, Speicher reservieren
|
||||
if (rows > 0 && cols > 0)
|
||||
{
|
||||
matrix.rows = 0;
|
||||
matrix.cols = 0;
|
||||
matrix.buffer = (MatrixType *)malloc(rows * cols * sizeof(MatrixType));
|
||||
if (matrix.buffer != NULL)
|
||||
{
|
||||
matrix.rows = rows;
|
||||
matrix.cols = cols;
|
||||
}
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
|
||||
3
matrix.h
3
matrix.h
@ -8,9 +8,10 @@ typedef float MatrixType;
|
||||
// TODO Matrixtyp definieren
|
||||
typedef struct
|
||||
{
|
||||
MatrixType *buffer;
|
||||
unsigned int rows;
|
||||
unsigned int cols;
|
||||
MatrixType *buffer;
|
||||
|
||||
} Matrix;
|
||||
|
||||
|
||||
|
||||
@ -8,7 +8,58 @@
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
// TODO
|
||||
// TODO : Fehlerbehandlung
|
||||
// Öffne die Datei zum Schreiben im Binärmodus
|
||||
FILE *file = fopen(path, "wb");
|
||||
if (!file) return;
|
||||
|
||||
// Schreibe den Datei-Tag
|
||||
const char *tag = "__info2_neural_network_file_format__";
|
||||
fwrite(tag, 1, strlen(tag), file);
|
||||
|
||||
// Schreibe die Anzahl der Layer
|
||||
if (nn.numberOfLayers == 0) {
|
||||
fclose(file);
|
||||
return;
|
||||
}
|
||||
|
||||
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
|
||||
int input = nn.layers[0].weights.cols;
|
||||
int output = nn.layers[0].weights.rows;
|
||||
|
||||
fwrite(&input, sizeof(int), 1, file);
|
||||
fwrite(&output, sizeof(int), 1, file);
|
||||
|
||||
// Schreibe die Layer-Daten
|
||||
for (int i = 0; i < nn.numberOfLayers; i++)
|
||||
{
|
||||
const Layer *layer = &nn.layers[i];
|
||||
int out = layer->weights.rows;
|
||||
int in = layer->weights.cols;
|
||||
|
||||
|
||||
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
|
||||
|
||||
|
||||
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
|
||||
|
||||
if (i + 1 < nn.numberOfLayers)
|
||||
{
|
||||
int nextOut = nn.layers[i + 1].weights.rows;
|
||||
fwrite(&nextOut, sizeof(int), 1, file);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
|
||||
// Debuging-Ausgabe
|
||||
printf("prepareNeuralNetworkFile: Datei '%s' erstellt mit %u Layer(n)\n", path, nn.numberOfLayers);
|
||||
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
|
||||
Layer layer = nn.layers[i];
|
||||
printf("Layer %u: weights (%u x %u), biases (%u x %u)\n",
|
||||
i, layer.weights.rows, layer.weights.cols, layer.biases.rows, layer.biases.cols);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user