NNTest nur noch predict-Fehler

This commit is contained in:
Björn 2025-11-17 20:19:35 +01:00
parent 86359bb37f
commit 8c2ed38abf
3 changed files with 45 additions and 3 deletions

View File

@ -8,9 +8,10 @@
Matrix createMatrix(unsigned int rows, unsigned int cols)
{
Matrix matrix;
matrix.buffer = NULL;
matrix.rows = 0;
matrix.cols = 0;
matrix.buffer = NULL;
// Wenn die Dimensionen gültig sind, Speicher reservieren
if (rows > 0 && cols > 0)

View File

@ -8,9 +8,10 @@ typedef float MatrixType;
// TODO Matrixtyp definieren
typedef struct
{
MatrixType *buffer;
unsigned int rows;
unsigned int cols;
MatrixType *buffer;
} Matrix;

View File

@ -8,7 +8,47 @@
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
// TODO
// TODO : Fehlerbehandlung
FILE *file = fopen(path, "wb");
if (!file) {
perror("Fehler beim Öffnen der Datei");
return;
}
const char *header = "__info2_neural_network_file_format__";
fwrite(header, sizeof(char), strlen(header), file);
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
Layer layer = nn.layers[i];
unsigned int inputDim = (i == 0) ? layer.weights.cols : 0; // nur beim ersten Layer
unsigned int outputDim = layer.weights.rows;
if (i == 0) {
// erstes Layer: inputDim und outputDim schreiben
fwrite(&inputDim, sizeof(unsigned int), 1, file);
fwrite(&outputDim, sizeof(unsigned int), 1, file);
} else {
// nur outputDim für weitere Layer
fwrite(&outputDim, sizeof(unsigned int), 1, file);
}
fwrite(layer.weights.buffer, sizeof(MatrixType), layer.weights.rows * layer.weights.cols, file);
fwrite(layer.biases.buffer, sizeof(MatrixType), layer.biases.rows * layer.biases.cols, file);
}
unsigned int zero = 0;
fwrite(&zero, sizeof(unsigned int), 1, file);
fclose(file);
// Debug
printf("prepareNeuralNetworkFile: Datei '%s' erstellt mit %u Layer(n)\n", path, nn.numberOfLayers);
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
Layer layer = nn.layers[i];
printf("Layer %u: weights (%u x %u), biases (%u x %u)\n",
i, layer.weights.rows, layer.weights.cols, layer.biases.rows, layer.biases.cols);
}
}
void test_loadModelReturnsCorrectNumberOfLayers(void)