bintree implementiert

This commit is contained in:
Jan Uhlmann 2025-12-08 16:04:33 +01:00
parent afe2c3b90d
commit c2c94cd71d

109
bintree.c
View File

@ -1,36 +1,117 @@
#include <string.h>
#include <stdlib.h>
#include "stack.h"
#include "bintree.h"
//TODO: binären Suchbaum implementieren
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
* `treeSize`: zählt die Knoten im Baum (rekursiv),
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
static StackNode *iterStack = NULL;
static void pushLeftBranch(StackNode **stack, TreeNode *node);
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
// Inserts a new node into the BST.
// If isDuplicate == NULL → duplicates are allowed
// If isDuplicate != NULL → duplicates are ignored and *isDuplicate = 1
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
CompareFctType compareFct, int *isDuplicate)
{
if (root == NULL)
{
TreeNode *newNode = calloc(1, sizeof(TreeNode));
if (!newNode)
return NULL;
newNode->data = malloc(dataSize);
if (!newNode->data)
{
free(newNode);
return NULL;
}
memcpy(newNode->data, data, dataSize);
if (isDuplicate)
*isDuplicate = 0;
return newNode;
}
int cmp = compareFct(data, root->data);
if (cmp < 0 || (cmp == 0 && isDuplicate == NULL))
{
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
}
else if (cmp > 0)
{
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
}
else
{
if (isDuplicate)
*isDuplicate = 1;
}
return root;
}
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
// push the top node and push all its left nodes.
static void pushLeftBranch(StackNode **stack, TreeNode *node)
{
while (node)
{
*stack = push(*stack, node);
node = node->left;
}
}
// If root != NULL → reset iterator and start from new tree.
// If root == NULL → continue iterating.
void *nextTreeData(TreeNode *root)
{
// Start new iteration
if (root != NULL)
{
// reset old iterator state
clearStack(iterStack);
iterStack = NULL;
// push root and all left children
pushLeftBranch(&iterStack, root);
}
// No active iterator
if (iterStack == NULL)
return NULL;
// Get next node
TreeNode *node = (TreeNode *)top(iterStack);
iterStack = pop(iterStack);
// push right subtree and its left descendants
if (node->right)
pushLeftBranch(&iterStack, node->right);
return node->data;
}
// Releases all memory resources (including data copies).
// Frees all nodes and also resets iterator.
void clearTree(TreeNode *root)
{
if (!root)
return;
clearTree(root->left);
clearTree(root->right);
free(root->data);
free(root);
// If we clear the tree, iterator must not point into freed memory.
clearStack(iterStack);
iterStack = NULL;
}
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root)
{
if (!root)
return 0;
}
return 1 + treeSize(root->left) + treeSize(root->right);
}