Compare commits

..

No commits in common. "main" and "main" have entirely different histories.
main ... main

11 changed files with 43 additions and 575 deletions

5
.gitignore vendored
View File

@ -1,5 +0,0 @@
*doble*
*.o
*.exe
.vscode
run*Tests

107
bintree.c
View File

@ -1,117 +1,36 @@
#include <string.h> #include <string.h>
#include <stdlib.h>
#include "stack.h" #include "stack.h"
#include "bintree.h" #include "bintree.h"
static StackNode *iterStack = NULL; //TODO: binären Suchbaum implementieren
static void pushLeftBranch(StackNode **stack, TreeNode *node); /* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
* `treeSize`: zählt die Knoten im Baum (rekursiv),
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
// Inserts a new node into the BST. // Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
// If isDuplicate == NULL → duplicates are allowed // if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
// If isDuplicate != NULL → duplicates are ignored and *isDuplicate = 1 TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
CompareFctType compareFct, int *isDuplicate)
{ {
if (root == NULL)
{
TreeNode *newNode = calloc(1, sizeof(TreeNode));
if (!newNode)
return NULL;
newNode->data = malloc(dataSize);
if (!newNode->data)
{
free(newNode);
return NULL;
}
memcpy(newNode->data, data, dataSize);
if (isDuplicate)
*isDuplicate = 0;
return newNode;
}
int cmp = compareFct(data, root->data);
if (cmp < 0 || (cmp == 0 && isDuplicate == NULL))
{
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
}
else if (cmp > 0)
{
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
}
else
{
if (isDuplicate)
*isDuplicate = 1;
}
return root;
} }
static void pushLeftBranch(StackNode **stack, TreeNode *node) // Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
{ // Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
while (node) // push the top node and push all its left nodes.
{
*stack = push(*stack, node);
node = node->left;
}
}
// If root != NULL → reset iterator and start from new tree.
// If root == NULL → continue iterating.
void *nextTreeData(TreeNode *root) void *nextTreeData(TreeNode *root)
{ {
// Start new iteration
if (root != NULL)
{
// reset old iterator state
clearStack(iterStack);
iterStack = NULL;
// push root and all left children
pushLeftBranch(&iterStack, root);
}
// No active iterator
if (iterStack == NULL)
return NULL;
// Get next node
TreeNode *node = (TreeNode *)top(iterStack);
iterStack = pop(iterStack);
// push right subtree and its left descendants
if (node->right)
pushLeftBranch(&iterStack, node->right);
return node->data;
} }
// Frees all nodes and also resets iterator. // Releases all memory resources (including data copies).
void clearTree(TreeNode *root) void clearTree(TreeNode *root)
{ {
if (!root)
return;
clearTree(root->left);
clearTree(root->right);
free(root->data);
free(root);
// If we clear the tree, iterator must not point into freed memory.
clearStack(iterStack);
iterStack = NULL;
} }
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root) unsigned int treeSize(const TreeNode *root)
{ {
if (!root)
return 0;
return 1 + treeSize(root->left) + treeSize(root->right);
} }

5
main.c
View File

@ -1,6 +1,5 @@
#include <stdlib.h> #include <stdlib.h>
#include <stdio.h> #include <stdio.h>
#include <time.h>
#include "numbers.h" #include "numbers.h"
#include "timer.h" #include "timer.h"
#include "highscore.h" #include "highscore.h"
@ -40,9 +39,6 @@ int main(int argc, char *argv[])
{ {
int exitCode = EXIT_FAILURE; int exitCode = EXIT_FAILURE;
// set seed
srand(time(NULL));
if(argc != 2) if(argc != 2)
{ {
fprintf(stderr, "Usage: %s <player name>\n", argv[0]); fprintf(stderr, "Usage: %s <player name>\n", argv[0]);
@ -87,7 +83,6 @@ int main(int argc, char *argv[])
saveHighscores(highscorePath); saveHighscores(highscorePath);
clearHighscores(); clearHighscores();
free(numbers);
exitCode = EXIT_SUCCESS; exitCode = EXIT_SUCCESS;
} }

View File

@ -1,5 +1,5 @@
CC = gcc CC = gcc
CFLAGS = -g -Wall -lm FLAGS = -g -Wall -lm
ifeq ($(OS),Windows_NT) ifeq ($(OS),Windows_NT)
include makefile_windows.variables include makefile_windows.variables
@ -27,29 +27,16 @@ doble_initial:
program_obj_files = stack.o bintree.o numbers.o timer.o highscore.o program_obj_files = stack.o bintree.o numbers.o timer.o highscore.o
doble : main.o $(program_obj_files) doble : main.o $(program_obj_files)
$(CC) $(CFLAGS) $^ -o doble $(CC) $(FLAGS) $^ -o doble
$(program_obj_files): %.o: %.c $(program_obj_filesobj_files): %.o: %.c
$(CC) -c $(CFLAGS) $^ -o $@ $(CC) -c $(FLAGS) $^ -o $@
# -------------------------- # --------------------------
# Unit Tests # Unit Tests
# -------------------------- # --------------------------
TEST_STACK_SOURCES = stack.c test_stack.c $(unityfolder)/unity.c unitTests:
TEST_BINTREE_SOURCES = bintree.c test_bintree.c stack.c $(unityfolder)/unity.c echo "needs to be implemented"
TEST_NUMBERS_SOURCES = stack.c numbers.c bintree.c $(unityfolder)/unity.c test_numbers.c
stackTests: $(TEST_STACK_SOURCES) stack.h
$(CC) $(CFLAGS) -I$(unityfolder) $(TEST_STACK_SOURCES) -o runStackTests
./runStackTests
bintreeTests: $(TEST_BINTREE_SOURCES) stack.h bintree.h
$(CC) $(CFLAGS) -I$(unityfolder) $(TEST_BINTREE_SOURCES) -o runBintreeTests
./runBintreeTests
numbersTests: $(TEST_NUMBERS_SOURCES) stack.h bintree.h numbers.h
$(CC) $(CFLAGS) -I$(unityfolder) $(TEST_NUMBERS_SOURCES) -o runNumbersTests
./runNumbersTests
# -------------------------- # --------------------------
# Clean # Clean

View File

@ -5,79 +5,22 @@
#include "numbers.h" #include "numbers.h"
#include "bintree.h" #include "bintree.h"
//Speicher für Array erstellen, zufällige Zahlen von 1-2xlen erzeugen, mittels Binärbaum checken, ob Zahlen einzigartig sind //TODO: getDuplicate und createNumbers implementieren
//Eine Zahl duplizieren, an zufälliger Stelle einfügen und die Zahl an der Stelle ans Ende schieben /* * * Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an Zufallszahlen.
const int compare (const void *a, const void *b); * Sicherstellen, dass beim Befüllen keine Duplikate entstehen.
* Duplizieren eines zufälligen Eintrags im Array.
* in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl durch Vergleich benachbarter Elemente. */
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries.
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while
// creating random numbers.
unsigned int *createNumbers(unsigned int len) unsigned int *createNumbers(unsigned int len)
{ {
unsigned int *numbers = malloc (sizeof(unsigned int) * len);
unsigned int upperLimit = len * 2;
int isDuplicate = 0;
TreeNode *binTree = NULL;
for (unsigned int i = 0; i < len; i++) {
do
{
isDuplicate = 0;
numbers[i] = rand () % upperLimit + 1;
binTree = addToTree(binTree, &numbers[i], sizeof(unsigned int), compare, &isDuplicate);
} while (isDuplicate);
}
unsigned int duplicate = numbers[rand () % len];
int indexDuplicate;
do {
indexDuplicate = rand() % len;
} while (numbers[indexDuplicate] == duplicate);
if (numbers[len-1] != duplicate) {
numbers[len-1] = numbers[indexDuplicate];
}
numbers[indexDuplicate] = duplicate;
clearTree(binTree);
return numbers;
} }
//Vergleichsfunktion von qsort // Returns only the only number in numbers which is present twice. Returns zero on errors.
const int compare (const void *a, const void *b) {
const unsigned int *x = a;
const unsigned int *y = b;
if (*x < *y) {
return -1;
}
else if (*x > *y) {
return 1;
}
else {
return 0;
}
}
//Sortiert Zahlen mit qsort, vergleicht dann benachbarte Elemente und gibt bei Erfolg die doppelte Zahl zurück
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len) unsigned int getDuplicate(const unsigned int numbers[], unsigned int len)
{ {
if (len < 2) {
return 0;
}
unsigned int *copy = malloc (sizeof(unsigned int) * len);
memcpy (copy, numbers, sizeof(unsigned int) * len);
qsort(copy, len, sizeof(unsigned int), compare);
for (int i = 0; i < len-1; i++) {
if (copy[i] == copy [i+1]) {
unsigned int result = copy [i];
free (copy);
return result;
}
}
free (copy);
return 0;
} }

32
stack.c
View File

@ -1,7 +1,7 @@
#include <stdlib.h> #include <stdlib.h>
#include "stack.h" #include "stack.h"
// TODO: grundlegende Stackfunktionen implementieren: //TODO: grundlegende Stackfunktionen implementieren:
/* * `push`: legt ein Element oben auf den Stack, /* * `push`: legt ein Element oben auf den Stack,
* `pop`: entfernt das oberste Element, * `pop`: entfernt das oberste Element,
* `top`: liefert das oberste Element zurück, * `top`: liefert das oberste Element zurück,
@ -10,48 +10,24 @@
// Pushes data as pointer onto the stack. // Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data) StackNode *push(StackNode *stack, void *data)
{ {
// this is the new top node
StackNode *newTopNode = malloc(sizeof(StackNode));
if (newTopNode == NULL)
{
return NULL;
}
newTopNode->data = data;
newTopNode->next = stack;
return newTopNode;
} }
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be // Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
// freed by caller.) // freed by caller.)
StackNode *pop(StackNode *stack) StackNode *pop(StackNode *stack)
{ {
if (!stack)
{
return NULL;
}
StackNode *nextNode = stack->next;
free(stack);
return nextNode;
} }
// Returns the data of the top element. // Returns the data of the top element.
void *top(StackNode *stack) void *top(StackNode *stack)
{ {
if (!stack)
{
return NULL;
}
return stack->data;
} }
// Clears stack and releases all memory. // Clears stack and releases all memory.
void clearStack(StackNode *stack) void clearStack(StackNode *stack)
{ {
while (stack)
{
stack = pop(stack);
}
} }

View File

@ -7,11 +7,7 @@ The latest element is taken from the stack. */
#include <stdlib.h> #include <stdlib.h>
typedef struct StackNode //TODO: passenden Datentyp als struct anlegen
{
struct StackNode *next;
void *data;
} StackNode;
// Pushes data as pointer onto the stack. // Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data); StackNode *push(StackNode *stack, void *data);

View File

@ -1,145 +0,0 @@
#include "unity.h"
#include "bintree.h"
#include <string.h>
#include <stdio.h>
static int compareInt(const void *a, const void *b)
{
int x = *(const int *)a;
int y = *(const int *)b;
return (x > y) - (x < y);
}
void setUp(void)
{
}
void tearDown(void)
{
}
/* ============================================================
TEST 1 Strings einfügen + korrekte Reihenfolge prüfen
============================================================ */
void test_insert_and_retrieve_strings(void)
{
char *data1 = "a_this";
char *data2 = "b_is";
char *data3 = "c_testdata";
TreeNode *root = addToTree(NULL, data1, strlen(data1) + 1, (CompareFctType)strcmp, NULL);
addToTree(root, data2, strlen(data2) + 1, (CompareFctType)strcmp, NULL);
addToTree(root, data3, strlen(data3) + 1, (CompareFctType)strcmp, NULL);
TEST_ASSERT_EQUAL_STRING(data1, nextTreeData(root));
TEST_ASSERT_EQUAL_STRING(data2, nextTreeData(NULL));
TEST_ASSERT_EQUAL_STRING(data3, nextTreeData(NULL));
TEST_ASSERT_EQUAL_PTR(NULL, nextTreeData(NULL)); // Ende
clearTree(root);
}
/* ============================================================
TEST 2 Integer einfügen + Traversierung
============================================================ */
void test_insert_and_retrieve_ints(void)
{
int a = 2, b = 1, c = 3;
TreeNode *root = NULL;
root = addToTree(root, &a, sizeof(int), compareInt, NULL);
addToTree(root, &b, sizeof(int), compareInt, NULL);
addToTree(root, &c, sizeof(int), compareInt, NULL);
int *v1 = nextTreeData(root);
int *v2 = nextTreeData(NULL);
int *v3 = nextTreeData(NULL);
int *v4 = nextTreeData(NULL);
TEST_ASSERT_EQUAL_INT(1, *v1);
TEST_ASSERT_EQUAL_INT(2, *v2);
TEST_ASSERT_EQUAL_INT(3, *v3);
TEST_ASSERT_NULL(v4);
clearTree(root);
}
/* ============================================================
TEST 3 treeSize korrekt?
============================================================ */
void test_tree_size(void)
{
TreeNode *root = NULL;
TEST_ASSERT_EQUAL_UINT(0, treeSize(root));
int x1 = 10, x2 = 5, x3 = 15;
root = addToTree(root, &x1, sizeof(int), compareInt, NULL);
addToTree(root, &x2, sizeof(int), compareInt, NULL);
addToTree(root, &x3, sizeof(int), compareInt, NULL);
TEST_ASSERT_EQUAL_UINT(3, treeSize(root));
clearTree(root);
}
/* ============================================================
TEST 4 Duplikaterkennung
============================================================ */
void test_duplicate_detection(void)
{
int x = 42;
int dupFlag = -1;
TreeNode *root = addToTree(NULL, &x, sizeof(int), compareInt, &dupFlag);
TEST_ASSERT_EQUAL_INT(0, dupFlag);
addToTree(root, &x, sizeof(int), compareInt, &dupFlag);
TEST_ASSERT_EQUAL_INT(1, dupFlag);
TEST_ASSERT_EQUAL_UINT(1, treeSize(root));
clearTree(root);
}
/* ============================================================
TEST 5 Iterator nach clearTree sollte NULL liefern
============================================================ */
void test_iterator_after_cleartree(void)
{
int a = 5, b = 1, c = 9;
TreeNode *root = NULL;
root = addToTree(root, &a, sizeof(int), compareInt, NULL);
addToTree(root, &b, sizeof(int), compareInt, NULL);
addToTree(root, &c, sizeof(int), compareInt, NULL);
nextTreeData(root);
clearTree(root);
TEST_ASSERT_NULL(nextTreeData(NULL));
TEST_ASSERT_NULL(nextTreeData(NULL));
}
int main(void)
{
printf("============================\n");
printf("Bintree tests\n");
printf("============================\n");
UNITY_BEGIN();
RUN_TEST(test_insert_and_retrieve_strings);
RUN_TEST(test_insert_and_retrieve_ints);
RUN_TEST(test_tree_size);
RUN_TEST(test_duplicate_detection);
RUN_TEST(test_iterator_after_cleartree);
return UNITY_END();
}

View File

@ -1,127 +0,0 @@
#include "unity.h"
#include "numbers.h"
#include "stdlib.h"
#include "string.h"
static int compareInt(const void *ptr1, const void *ptr2);
void setUp(void)
{
// set stuff up here
}
void tearDown(void)
{
// set stuff up here
}
// getDuplicate on array without duplicats
// expects 0/error
void test_get_duplicate_without_duplicates(void)
{
unsigned int input[] = {1, 5, 9, 2, 4};
unsigned int len = sizeof(input) / sizeof(input[0]);
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(input, len));
}
// getDuplicate() on some arrays with 1 duplicate
void test_get_duplicate(void)
{
unsigned int arr1[] = {4, 15, 32, 5, 3, 8, 8};
unsigned int len1 = sizeof(arr1) / sizeof(arr1[0]);
unsigned int arr2[] = {1, 3, 3, 7};
unsigned int len2 = sizeof(arr2) / sizeof(arr2[0]);
unsigned int arr3[] = {7, 7, 8, 4, 9, 1};
unsigned int len3 = sizeof(arr3) / sizeof(arr3[0]);
TEST_ASSERT_EQUAL_UINT(8, getDuplicate(arr1, len1));
TEST_ASSERT_EQUAL_UINT(3, getDuplicate(arr2, len2));
TEST_ASSERT_EQUAL_UINT(7, getDuplicate(arr3, len3));
}
// this tries to brute force a triple
void test_for_triple(void)
{
// this test is less effective if srand is called inside createNumbers()
for (int i = 0; i < 100000; i++)
{
unsigned int *numbers = createNumbers(3);
if (numbers[0] == numbers[1] && numbers[1] == numbers[2])
{
TEST_FAIL_MESSAGE("triple generated");
}
free(numbers);
}
}
// check if getDuplicate() modifies the original array (it should not)
void test_get_duplicate_does_modify()
{
unsigned int arr1[] = {1, 2, 3, 4, 5, 4, 3, 2, 1}; // sorting would change this
size_t len1 = sizeof(arr1) / sizeof(arr1[0]);
unsigned int arr1Copy[9];
memcpy(arr1Copy, arr1, len1 * sizeof(unsigned int));
getDuplicate(arr1, len1); // return value does not matter
// check if the arrays are still the same
if (memcmp(arr1, arr1Copy, len1 * sizeof(unsigned int)))
{
TEST_FAIL_MESSAGE("Arrays have diverged");
}
}
// checks if there is exactly 1 duplicate number at varying array sizes
void test_exactly_one_duplicate()
{
const size_t MAX_LIST_SIZE = 20; // max tested array len
const size_t ITERATIONS_PER_LEN = 20; // number of iterations for each tested array len
for (size_t len = 2; len < MAX_LIST_SIZE; len++) // start with smallest sensible size 2
{
for (size_t i = 0; i < ITERATIONS_PER_LEN; i++)
{
unsigned int *randTestList = createNumbers((unsigned int)len);
qsort(randTestList, len, sizeof(unsigned int), compareInt);
int cntDuplicate = 0;
for (size_t j = 0; j < len - 1; j++)
{
if (randTestList[j] == randTestList[j + 1])
{
cntDuplicate++;
}
}
// there should be exactly 1 duplicate
TEST_ASSERT_EQUAL_INT(1, cntDuplicate);
free(randTestList);
}
}
}
static int compareInt(const void *ptr1, const void *ptr2)
{
unsigned int num1 = *(int *)ptr1;
unsigned int num2 = *(int *)ptr2;
if (num1 < num2)
return -1;
if (num1 > num2)
return 1;
return 0;
}
int main(void)
{
printf("============================\nNumbers tests\n============================\n");
UNITY_BEGIN();
RUN_TEST(test_get_duplicate_without_duplicates);
RUN_TEST(test_for_triple);
RUN_TEST(test_exactly_one_duplicate);
RUN_TEST(test_get_duplicate);
RUN_TEST(test_get_duplicate_does_modify);
return UNITY_END();
}

View File

@ -1,64 +0,0 @@
#include "unity.h"
#include "stack.h"
int data1 = 10;
int data2 = 20;
int data3 = 30;
StackNode *stack = NULL;
void setUp(void)
{
// set stuff up here
}
void tearDown(void)
{
clearStack(stack);
stack = NULL;
}
void test_push_and_pop(void)
{
stack = push(stack, &data1);
stack = push(stack, &data2);
stack = push(stack, &data3);
TEST_ASSERT_EQUAL_PTR(top(stack), &data3);
stack = pop(stack);
TEST_ASSERT_EQUAL_PTR(top(stack), &data2);
stack = pop(stack);
TEST_ASSERT_EQUAL_PTR(top(stack), &data1);
stack = pop(stack);
}
// pop and top should return NULL if called with NULL ptr
void test_handle_NULL(void)
{
TEST_ASSERT_NULL(pop(stack));
TEST_ASSERT_NULL(top(stack));
}
void test_top(void)
{
TEST_ASSERT_NULL(top(stack));
stack = push(stack, &data1);
TEST_ASSERT_EQUAL_PTR(top(stack), &data1);
TEST_ASSERT_EQUAL_INT(*(int *)top(stack), data1);
stack = push(stack, &data2);
TEST_ASSERT_EQUAL_PTR(top(stack), &data2);
TEST_ASSERT_EQUAL_INT(*(int *)top(stack), data2);
stack = push(stack, &data3);
TEST_ASSERT_EQUAL_PTR(top(stack), &data3);
TEST_ASSERT_EQUAL_INT(*(int *)top(stack), data3);
}
int main(void)
{
printf("============================\nStack tests\n============================\n");
UNITY_BEGIN();
RUN_TEST(test_push_and_pop);
RUN_TEST(test_handle_NULL);
RUN_TEST(test_top);
return UNITY_END();
}

13
timer.c
View File

@ -1,12 +1,6 @@
#include "timer.h" #include "timer.h"
#ifdef __linux__ #if __APPLE__
// Defines strict posix compliance for CLOCK_MONOTONIC
#define _POSIX_C_SOURCE 199309L
#include <time.h>
#endif
#if __APPLE__ || __linux__
#include <sys/time.h> #include <sys/time.h>
static struct timespec start = {0, 0}; static struct timespec start = {0, 0};
@ -27,8 +21,7 @@ double stopTimer()
double measuredSeconds = (double)delta_us / 1000000.; double measuredSeconds = (double)delta_us / 1000000.;
if (start.tv_nsec > 0) if(start.tv_nsec > 0) {
{
start.tv_nsec = 0; start.tv_nsec = 0;
start.tv_sec = 0; start.tv_sec = 0;
} }
@ -52,7 +45,7 @@ double stopTimer()
{ {
double measuredSeconds = (clock() - (double)startClocks) / CLOCKS_PER_SEC; double measuredSeconds = (clock() - (double)startClocks) / CLOCKS_PER_SEC;
if (startClocks > 0) if(startClocks > 0)
startClocks = 0; startClocks = 0;
else else
measuredSeconds = -1; measuredSeconds = -1;