75 lines
1.9 KiB
C
75 lines
1.9 KiB
C
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
#include <string.h>
|
|
#include "numbers.h"
|
|
#include "bintree.h"
|
|
|
|
//TODO: getDuplicate und createNumbers implementieren
|
|
/* * * Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an Zufallszahlen.
|
|
* Sicherstellen, dass beim Befüllen keine Duplikate entstehen.
|
|
* Duplizieren eines zufälligen Eintrags im Array.
|
|
* in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl durch Vergleich benachbarter Elemente. */
|
|
|
|
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries.
|
|
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while
|
|
// creating random numbers.
|
|
unsigned int *createNumbers(unsigned int len)
|
|
{
|
|
srand(time(NULL));
|
|
|
|
unsigned int *numbers = malloc (sizeof(unsigned int) * (len+1));
|
|
unsigned int newNumber;
|
|
|
|
for (unsigned int i = 0; i < len; i++) {
|
|
int unique = 0;
|
|
|
|
while (!unique) {
|
|
unique = 1;
|
|
newNumber = rand () % (2*len) + 1;
|
|
|
|
for (unsigned int j = 0; j < i; j++) {
|
|
if (numbers[j] == newNumber) {
|
|
unique = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
numbers[i] = newNumber;
|
|
}
|
|
|
|
unsigned int duplicate = numbers[rand () % len];
|
|
numbers[len] = duplicate;
|
|
|
|
return numbers;
|
|
}
|
|
|
|
int compare (const void *a, const void *b) {
|
|
unsigned int *x = a;
|
|
unsigned int *y = b;
|
|
if (*x < *y) {
|
|
return -1;
|
|
}
|
|
else if (*x > *y) {
|
|
return 1;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
// Returns only the only number in numbers which is present twice. Returns zero on errors.
|
|
unsigned int getDuplicate(unsigned int numbers[], unsigned int lenPlusOne)
|
|
{
|
|
if (lenPlusOne < 2) {
|
|
return 0;
|
|
}
|
|
|
|
qsort(numbers,lenPlusOne, sizeof(unsigned int), compare);
|
|
|
|
for (int i = 0; i < lenPlusOne-1; i++) {
|
|
if (numbers[i] == numbers [i+1]) {
|
|
return numbers[i];
|
|
}
|
|
}
|
|
return 0;
|
|
} |