155 lines
4.1 KiB
C
155 lines
4.1 KiB
C
#include <string.h>
|
|
#include "stack.h"
|
|
#include "bintree.h"
|
|
#include <stdlib.h>
|
|
|
|
// TODO: binären Suchbaum implementieren
|
|
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
|
|
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
|
|
* `treeSize`: zählt die Knoten im Baum (rekursiv),
|
|
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
|
|
|
|
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
|
|
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
|
|
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
|
|
{
|
|
TreeNode *insertedNode;
|
|
|
|
// create a new node if the current node is NULL
|
|
if (root == NULL)
|
|
{
|
|
// it's important to zero the pointers for adjacent nodes
|
|
insertedNode = calloc(1, sizeof(TreeNode));
|
|
if (!insertedNode)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
insertedNode->data = malloc(dataSize);
|
|
if (!insertedNode->data)
|
|
{
|
|
return NULL;
|
|
}
|
|
memcpy(insertedNode->data, data, dataSize);
|
|
// reset isDuplicate if it exists
|
|
if (isDuplicate)
|
|
{
|
|
*isDuplicate = 0;
|
|
}
|
|
return insertedNode;
|
|
}
|
|
|
|
// TODO: what is the correct data type here?
|
|
int cmpRes = (*compareFct)(data, root->data);
|
|
// insert into the left branch
|
|
if (cmpRes < 0 || (cmpRes == 0 && isDuplicate == NULL))
|
|
{
|
|
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
|
|
}
|
|
// insert into the right branch
|
|
else if (cmpRes > 0)
|
|
{
|
|
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
|
|
}
|
|
// the data is equal to the current node
|
|
else
|
|
{
|
|
// the data already exists in the tree and duplicates are ignored (isDuplicate* not NULL)
|
|
*isDuplicate = 1;
|
|
}
|
|
return root;
|
|
}
|
|
|
|
// push all left descendants from @param node
|
|
static void pushLeftDesc(StackNode **stackPtr, TreeNode *node)
|
|
{
|
|
if (!stackPtr || !node)
|
|
{
|
|
return;
|
|
}
|
|
TreeNode *curNode = node;
|
|
while (curNode->left)
|
|
{
|
|
*stackPtr = push(*stackPtr, curNode->left);
|
|
if (!*stackPtr)
|
|
{
|
|
return;
|
|
}
|
|
curNode = curNode->left;
|
|
}
|
|
}
|
|
|
|
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
|
|
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
|
|
// push the top node and push all its left nodes.
|
|
void *nextTreeData(TreeNode *root)
|
|
{
|
|
// this creates a static variable that maintains an internal state
|
|
static StackNode *stack;
|
|
|
|
// create a new stack
|
|
if (root)
|
|
{
|
|
// clear possibly existing stacks
|
|
clearStack(stack);
|
|
// init a new stack
|
|
stack = push(NULL, root);
|
|
// init failed
|
|
if (!stack)
|
|
{
|
|
return NULL;
|
|
}
|
|
pushLeftDesc(&stack, root);
|
|
|
|
// return the first val
|
|
return nextTreeData(NULL);
|
|
}
|
|
|
|
// neither stack nor root exist
|
|
if (!stack)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
// get next val with stack
|
|
TreeNode *res = top(stack);
|
|
stack = pop(stack);
|
|
if (res->right)
|
|
{
|
|
stack = push(stack, res->right);
|
|
pushLeftDesc(&stack, res->right);
|
|
}
|
|
|
|
return res->data;
|
|
}
|
|
|
|
// Releases all memory resources (including data copies).
|
|
void clearTree(TreeNode *root)
|
|
{
|
|
// this check is crucial for recursion
|
|
if (!root)
|
|
{
|
|
// nothing to clear
|
|
return;
|
|
}
|
|
|
|
// release the resources of child nodes first
|
|
clearTree(root->left);
|
|
clearTree(root->right);
|
|
|
|
// free the data (it's just a copy created in addToTree())
|
|
free(root->data);
|
|
free(root);
|
|
}
|
|
|
|
// Returns the number of entries in the tree given by root.
|
|
unsigned int treeSize(const TreeNode *root)
|
|
{
|
|
// there are no nodes
|
|
if (!root)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
return 1 + treeSize(root->left) + treeSize(root->right);
|
|
} |