Compare commits

...

5 Commits

Author SHA1 Message Date
Simon Wiesend
adf75b66d2
make matrix multiplication faster 2025-11-23 16:31:18 +01:00
Simon Wiesend
00ac1aa04a
initial prototype 2025-11-23 16:29:59 +01:00
Simon Wiesend
04768db522
update .gitignore 2025-11-23 15:57:18 +01:00
Simon Wiesend
01a13090a5
Merge remote-tracking branch 'origin/neuralNetworkTests' into simon 2025-11-23 15:53:22 +01:00
84b65525a6 Funktion implementiert / nicht getestet 2025-11-23 12:04:25 +00:00
4 changed files with 187 additions and 20 deletions

5
.gitignore vendored
View File

@ -2,4 +2,7 @@ mnist
runTests
*.o
*.exe
runMatrixTests
runMatrixTests
runImageInputTests
runNeuralNetworkTests
.vscode

View File

@ -6,17 +6,156 @@
#define BUFFER_SIZE 100
#define FILE_HEADER_STRING "__info2_image_file_format__"
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
typedef enum
{
IMG_SUCCESS = 0,
IMG_ERR_INVALID_HEADER, // Header did not match
IMG_ERR_READ, // Failed to read from file, maybe it's too short
IMG_ERR, // General Error
} ImageError;
static ImageError checkHeader(FILE *file);
static ImageError readPictureParams(unsigned short *number, unsigned short *width, unsigned short *height, FILE *file);
static ImageError readImage(size_t numPixels, GrayScalePixelType *pixelBuffer, unsigned char *label, FILE *file);
static ImageError parseImageFile(FILE *file, GrayScaleImageSeries *series);
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
GrayScaleImageSeries *readImages(const char *path)
{
GrayScaleImageSeries *series = NULL;
GrayScaleImageSeries *series = calloc(1, sizeof(GrayScaleImageSeries));
if (series == NULL)
{
return NULL;
}
FILE *file = fopen(path, "rb");
if (file == NULL)
{
clearSeries(series);
series = NULL;
return NULL; // fopen failed
}
if (parseImageFile(file, series))
{
clearSeries(series);
series = NULL;
}
fclose(file);
return series;
}
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
static ImageError parseImageFile(FILE *file, GrayScaleImageSeries *series)
{
if (checkHeader(file))
{
return IMG_ERR; // header check failed
}
unsigned short number, width, height;
if (readPictureParams(&number, &width, &height, file))
{
return IMG_ERR; // read failed
}
size_t pixels = width * height;
// now setup the image series
series->images = calloc(number, sizeof(GrayScaleImage));
if (series->images == NULL)
{
return IMG_ERR;
}
series->labels = malloc(number * sizeof(unsigned char));
if (series->labels == NULL)
{
return IMG_ERR;
}
series->count = number;
for (size_t imageIdx = 0; imageIdx < number; imageIdx++)
{
GrayScaleImage *curImage = &series->images[imageIdx];
curImage->buffer = malloc(sizeof(GrayScalePixelType) * pixels);
if (curImage->buffer == NULL)
{
return IMG_ERR;
}
curImage->width = width;
curImage->height = height;
if (readImage(pixels, curImage->buffer, &series->labels[imageIdx], file))
{
return IMG_ERR;
}
}
return IMG_SUCCESS;
}
static ImageError checkHeader(FILE *file)
{
size_t len = strlen(FILE_HEADER_STRING);
char headerBuf[len + 1];
size_t charsRead = fread(headerBuf, 1, len, file);
if (charsRead < len)
{
return IMG_ERR_READ;
}
headerBuf[len] = '\0';
return strcmp(headerBuf, FILE_HEADER_STRING) == 0 ? IMG_SUCCESS : IMG_ERR_INVALID_HEADER;
}
static ImageError readPictureParams(unsigned short *number, unsigned short *width, unsigned short *height, FILE *file)
{
if (1 != fread(number, sizeof(unsigned short), 1, file))
{
return IMG_ERR_READ;
}
if (1 != fread(width, sizeof(unsigned short), 1, file))
{
return IMG_ERR_READ;
}
if (1 != fread(height, sizeof(unsigned short), 1, file))
{
return IMG_ERR_READ;
}
return IMG_SUCCESS;
}
static ImageError readImage(size_t numPixels, GrayScalePixelType *pixelBuffer, unsigned char *label, FILE *file)
{
if (numPixels > fread(pixelBuffer, sizeof(GrayScalePixelType), numPixels, file))
{
return IMG_ERR_READ;
}
if (1 != fread(label, sizeof(unsigned char), 1, file))
{
return IMG_ERR_READ;
}
return IMG_SUCCESS;
}
// frees memory for each image buffer, image, label and finally series
void clearSeries(GrayScaleImageSeries *series)
{
if (series)
{
int seriesLen = series->count;
for (size_t imageIdx = 0; imageIdx < seriesLen; imageIdx++)
{
free(series->images[imageIdx].buffer);
}
free(series->images);
free(series->labels);
free(series);
}
}

View File

@ -109,7 +109,6 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
{
for (size_t n = 0; n < matrix1.cols; n++)
{
// this is unnecessarily complicated because at this point we already know that the matrices are compatible
setMatrixAt(getMatrixAt(matrix1, m, n) + getMatrixAt(matrix2, m, n), resMat, m, n);
}
}
@ -117,32 +116,37 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
return resMat;
}
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
Matrix multiply(const Matrix A, const Matrix B)
{
if (matrix1.cols != matrix2.rows || matrix1.buffer == NULL || matrix2.buffer == NULL)
if (A.cols != B.rows || A.buffer == NULL || B.buffer == NULL)
{
return createMatrix(0, 0);
}
int rows = matrix1.rows, cols = matrix2.cols;
Matrix resMat = createMatrix(rows, cols);
int rows = A.rows, cols = B.cols;
Matrix C = createMatrix(rows, cols);
if (resMat.buffer == NULL)
if (C.buffer == NULL)
{
return createMatrix(0, 0);
}
for (size_t rowIdx = 0; rowIdx < rows; rowIdx++)
// M = Rows, K = Common Dim, N = Cols
size_t M = A.rows, K = A.cols, N = B.cols;
for (size_t i = 0; i < M; i++)
{
for (size_t colIdx = 0; colIdx < cols; colIdx++)
for (size_t k = 0; k < K; k++)
{
int curCellVal = 0;
for (size_t k = 0; k < matrix1.cols; k++)
MatrixType valA = A.buffer[i * K + k];
for (size_t j = 0; j < N; j++)
{
curCellVal += getMatrixAt(matrix1, rowIdx, k) * getMatrixAt(matrix2, k, colIdx);
// C[i, j] += A[i, k] * B[k, j];
// M x N, M x K, K x N
C.buffer[i * N + j] += valA * B.buffer[k * N + j];
}
setMatrixAt(curCellVal, resMat, rowIdx, colIdx);
}
}
return resMat;
return C;
}

View File

@ -6,9 +6,30 @@
#include "neuralNetwork.h"
static void erzeugeMatrix(FILE *file, const Matrix *m)
{
fwrite(&m->rows, sizeof(int), 1, file);
fwrite(&m->cols, sizeof(int), 1, file);
fwrite(m->buffer, sizeof(MatrixType), m->rows * m->cols, file);
}
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
// TODO
FILE *file = fopen(path, "wb");
if (!file)
return;
const char *header = "__info2_neural_network_file_format__";
fwrite(header, sizeof(char), strlen(header), file);
fwrite(&nn.numberOfLayers, sizeof(int), 1, file);
for (int i = 0; i < nn.numberOfLayers; i++)
{
erzeugeMatrix(file, &nn.layers[i].weights);
erzeugeMatrix(file, &nn.layers[i].biases);
}
fclose(file);
}
void test_loadModelReturnsCorrectNumberOfLayers(void)