forked from freudenreichan/info2Praktikum-NeuronalesNetz
137 lines
3.8 KiB
C
137 lines
3.8 KiB
C
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "matrix.h"
|
|
|
|
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
|
{
|
|
Matrix mat = {.rows = rows, .cols = cols};
|
|
// If one dimension is 0, return both dimensions as 0 and don't init the array/buffer.
|
|
if (rows == 0 || cols == 0)
|
|
{
|
|
mat.rows = 0;
|
|
mat.cols = 0;
|
|
return mat;
|
|
}
|
|
|
|
// allocate contiguous and 0 initialized memory
|
|
mat.buffer = calloc(rows * cols, sizeof(MatrixType));
|
|
|
|
// check if calloc failed
|
|
if (mat.buffer == NULL)
|
|
{
|
|
clearMatrix(&mat);
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// reduce the dimensions to (0, 0) and free the memory
|
|
void clearMatrix(Matrix *matrix)
|
|
{
|
|
free(matrix->buffer);
|
|
matrix->buffer = NULL;
|
|
matrix->cols = 0;
|
|
matrix->rows = 0;
|
|
}
|
|
|
|
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
// do nothing if idx is not in array or matrix buffer is NULL
|
|
if (!(rowIdx < matrix.rows) || !(colIdx < matrix.cols) || matrix.buffer == NULL)
|
|
{
|
|
return;
|
|
}
|
|
|
|
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
|
}
|
|
|
|
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
// return UNDEFINED_MATRIX_VALUE if idx is not in array or matrix buffer is NULL
|
|
if (!(rowIdx < matrix.rows) || !(colIdx < matrix.cols) || matrix.buffer == NULL)
|
|
{
|
|
return UNDEFINED_MATRIX_VALUE;
|
|
}
|
|
|
|
return matrix.buffer[rowIdx * matrix.cols + colIdx];
|
|
};
|
|
|
|
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
Matrix resMat = (matrix1.cols > matrix2.cols) ? createMatrix(matrix1.rows, matrix1.cols) : createMatrix(matrix2.rows, matrix2.cols);
|
|
|
|
if (matrix1.cols != matrix2.cols)
|
|
{
|
|
if (matrix1.rows != matrix2.rows)
|
|
{
|
|
clearMatrix(&resMat);
|
|
return resMat;
|
|
}
|
|
else if (matrix1.cols == 1)
|
|
{
|
|
// broadcast vector
|
|
for (size_t m = 0; m < matrix2.rows; m++)
|
|
{
|
|
for (size_t n = 0; n < matrix2.cols; n++)
|
|
{
|
|
setMatrixAt(getMatrixAt(matrix2, m, n) + getMatrixAt(matrix1, m, 0), resMat, m, n);
|
|
}
|
|
}
|
|
return resMat;
|
|
}
|
|
else if (matrix2.cols == 1)
|
|
{
|
|
// broadcast vector
|
|
for (size_t m = 0; m < matrix1.rows; m++)
|
|
{
|
|
for (size_t n = 0; n < matrix1.cols; n++)
|
|
{
|
|
setMatrixAt(getMatrixAt(matrix1, m, n) + getMatrixAt(matrix2, m, 0), resMat, m, n);
|
|
}
|
|
}
|
|
return resMat;
|
|
}
|
|
else
|
|
{
|
|
clearMatrix(&resMat);
|
|
return resMat;
|
|
}
|
|
}
|
|
|
|
for (size_t m = 0; m < matrix1.rows; m++)
|
|
{
|
|
for (size_t n = 0; n < matrix1.cols; n++)
|
|
{
|
|
// this is unnecessarily complicated because at this point we already know that the matrices are compatible
|
|
setMatrixAt(getMatrixAt(matrix1, m, n) + getMatrixAt(matrix2, m, n), resMat, m, n);
|
|
}
|
|
}
|
|
|
|
return resMat;
|
|
}
|
|
|
|
// TODO implement
|
|
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
if (matrix1.cols != matrix2.rows || matrix1.buffer == NULL || matrix2.buffer == NULL)
|
|
{
|
|
return createMatrix(0, 0);
|
|
}
|
|
|
|
int rows = matrix1.rows, cols = matrix2.cols;
|
|
Matrix resMat = createMatrix(rows, cols);
|
|
|
|
for (size_t rowIdx = 0; rowIdx < rows; rowIdx++)
|
|
{
|
|
for (size_t colIdx = 0; colIdx < cols; colIdx++)
|
|
{
|
|
int curCellVal = 0;
|
|
for (size_t k = 0; k < matrix1.cols; k++)
|
|
{
|
|
curCellVal += getMatrixAt(matrix1, rowIdx, k) * getMatrixAt(matrix2, k, colIdx);
|
|
}
|
|
setMatrixAt(curCellVal, resMat, rowIdx, colIdx);
|
|
}
|
|
}
|
|
return resMat;
|
|
} |