__info2_neural_network_file_format__
This commit is contained in:
parent
6b5d94b075
commit
f99040a362
136
matrix.c
136
matrix.c
@ -4,32 +4,156 @@
|
||||
|
||||
// TODO Matrix-Funktionen implementieren
|
||||
|
||||
//Matrix dimensionieren
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
||||
{
|
||||
|
||||
Matrix m; //Struktur anlegen, Varibale m von Typ Matrix
|
||||
|
||||
//Sonderfall aus Unit-Test, wenn rows == 0 oder cols == 0, darf kein Speicher allokiert werden
|
||||
if(rows==0 || cols==0){
|
||||
m.rows = 0;
|
||||
m.cols = 0;
|
||||
m.buffer = NULL;
|
||||
return m;
|
||||
}
|
||||
|
||||
//Normalfall
|
||||
m.rows = rows; // strukurvariable.feldname --> Struktur-Zugriffsoperator
|
||||
m.cols = cols;
|
||||
m.buffer = malloc((rows * cols) * sizeof(MatrixType)); //Speicher reserviert für Elemente
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
void clearMatrix(Matrix *matrix)
|
||||
{
|
||||
|
||||
// falls Speicher existiert (buffer NICHT NULL ist): freigeben
|
||||
if(matrix->buffer != NULL)
|
||||
{
|
||||
free(matrix->buffer);// Speicher freigegeben aber zeigt irgendwo hin (dangling pointer)
|
||||
}
|
||||
|
||||
//Matrix in definierten leeren Zustand setzen
|
||||
matrix->buffer = NULL; // dangling pointer zurücksetzen
|
||||
matrix->rows = 0;
|
||||
matrix->cols = 0;
|
||||
}
|
||||
|
||||
//Wert in Matrix schreiben und wo genau
|
||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
|
||||
// Sicherheit: wenn buffer == NULL (kein gültiger Speicher) oder Index außerhalb der Matrix --> return
|
||||
if(matrix.buffer == NULL || rowIdx >= matrix.rows || colIdx >= matrix.cols)
|
||||
{
|
||||
return;
|
||||
}
|
||||
//index = Zeile * Anzahl_Spalten + Spalte
|
||||
unsigned int index = rowIdx * matrix.cols + colIdx;
|
||||
|
||||
// Schreibt value direkt an die berechnete Position im Matrixspeicher
|
||||
matrix.buffer[index] = value;
|
||||
}
|
||||
|
||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
|
||||
if (matrix.buffer == NULL || rowIdx >= matrix.rows || colIdx >= matrix.cols)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned int index = rowIdx * matrix.cols + colIdx;
|
||||
|
||||
return matrix.buffer[index];
|
||||
}
|
||||
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
|
||||
Matrix result;
|
||||
|
||||
//Zeilen müssen gleich sein
|
||||
if (matrix1.rows != matrix2.rows)
|
||||
{
|
||||
result.rows = 0;
|
||||
result.cols = 0;
|
||||
result.buffer = NULL;
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
//Spalten müssen gleich sein (mit broadcasting)
|
||||
//Fälle: gleiche Spalten ok, matrix1 hat 1 Spalte, matrix2 hat 1 Spalte
|
||||
//sonst inkompatibel
|
||||
if (matrix1.cols != matrix2.cols && matrix1.cols != 1 && matrix2.cols != 1)
|
||||
{
|
||||
result.rows = 0;
|
||||
result.cols = 0;
|
||||
result.buffer = NULL;
|
||||
return result;
|
||||
}
|
||||
|
||||
result.rows = matrix1.rows;
|
||||
result.cols = (matrix1.cols > matrix2.cols) ? matrix1.cols : matrix2.cols;
|
||||
|
||||
result.buffer = malloc(result.rows * result.cols * sizeof(MatrixType));
|
||||
|
||||
for (unsigned int r = 0; r < result.rows; r++)
|
||||
{
|
||||
for (unsigned int c = 0; c < result.cols; c++)
|
||||
{
|
||||
// Bestimme Spalte für matrix1:
|
||||
// Wenn nur 1 Spalte -> immer Spalte 0 benutzen
|
||||
unsigned int c1 = (matrix1.cols == 1) ? 0 : c;
|
||||
|
||||
// Bestimme Spalte für matrix2:
|
||||
unsigned int c2 = (matrix2.cols == 1) ? 0 : c;
|
||||
|
||||
MatrixType v1 = getMatrixAt(matrix1, r, c1);
|
||||
MatrixType v2 = getMatrixAt(matrix2, r, c2);
|
||||
|
||||
setMatrixAt(v1 + v2, result, r, c);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
|
||||
Matrix result;
|
||||
|
||||
if(matrix1.cols != matrix2.rows)
|
||||
{
|
||||
result.rows = 0;
|
||||
result.cols = 0;
|
||||
result.buffer = NULL;
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
result.rows = matrix1.rows;
|
||||
result.cols = matrix2.cols;
|
||||
|
||||
result.buffer = malloc(result.rows * result.cols * sizeof(MatrixType));
|
||||
|
||||
for (unsigned int r = 0; r < result.rows; r++)
|
||||
{
|
||||
for (unsigned int c = 0; c < result.cols; c++)
|
||||
{
|
||||
MatrixType sum = 0;
|
||||
|
||||
// gemeinsame Dimension = matrix1.cols = matrix2.rows
|
||||
for (unsigned int i = 0; i < matrix1.cols; i++)
|
||||
{
|
||||
MatrixType a = getMatrixAt(matrix1, r, i);
|
||||
MatrixType b = getMatrixAt(matrix2, i, c);
|
||||
|
||||
sum += a * b;
|
||||
}
|
||||
|
||||
setMatrixAt(sum, result, r, c);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
8
matrix.h
8
matrix.h
@ -5,6 +5,13 @@
|
||||
|
||||
typedef float MatrixType;
|
||||
|
||||
// TODO Matrixtyp definieren
|
||||
typedef struct {
|
||||
unsigned int rows;
|
||||
unsigned int cols;
|
||||
MatrixType* buffer; //buffer Pointer zeigt auf Heap, mit malloc dort dann Speicher reservieren
|
||||
} Matrix;
|
||||
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
||||
void clearMatrix(Matrix *matrix);
|
||||
@ -13,4 +20,5 @@ MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int co
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2);
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2);
|
||||
|
||||
|
||||
#endif
|
||||
BIN
neuralNetwork.o
BIN
neuralNetwork.o
Binary file not shown.
@ -2,30 +2,23 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include "unity.h"
|
||||
#include "unity/unity.h"
|
||||
#include "neuralNetwork.h"
|
||||
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
|
||||
//öffnet die Datei in Binär zum schreiben
|
||||
FILE *file = fopen(path, "wb");
|
||||
if (!file) return;
|
||||
|
||||
//Fester Headerstring
|
||||
const char *tag = "__info2_neural_network_file_format__";
|
||||
fwrite(tag, sizeof(char), strlen(tag), file);
|
||||
|
||||
if (nn.numberOfLayers == 0 || nn.layers == NULL) {
|
||||
int zero = 0;
|
||||
fwrite(&zero, sizeof(int), 1, file); // inputDim
|
||||
fwrite(&zero, sizeof(int), 1, file); // outputDim
|
||||
fclose(file);
|
||||
return;
|
||||
}
|
||||
|
||||
//Bestimmt die Eingabedimension
|
||||
int inputDim = nn.layers[0].weights.cols;
|
||||
fwrite(&inputDim, sizeof(int), 1, file);
|
||||
|
||||
|
||||
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
|
||||
|
||||
const Layer *L = &nn.layers[i];
|
||||
@ -33,12 +26,11 @@ static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
const Matrix *B = &L->biases;
|
||||
|
||||
int outputDim = W->rows;
|
||||
|
||||
fwrite(&outputDim, sizeof(int), 1, file);
|
||||
|
||||
//Anzahl der Weight-Werte
|
||||
size_t weightCount = (size_t)(W->rows * W->cols);
|
||||
fwrite(W->buffer, sizeof(MatrixType), weightCount, file);
|
||||
|
||||
fwrite(&weightCount, sizeof(size_t), 1, file);
|
||||
//Anzahl der Bias-Werte
|
||||
size_t biasCount = (size_t)(B->rows * B->cols);
|
||||
fwrite(B->buffer, sizeof(MatrixType), biasCount, file);
|
||||
|
||||
|
||||
BIN
runMatrixTests
BIN
runMatrixTests
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user