__info2_neural_network_file_format__

This commit is contained in:
Anton Timofeev 2025-11-21 08:57:23 +01:00
parent 6b5d94b075
commit f99040a362
10 changed files with 146 additions and 22 deletions

136
matrix.c
View File

@ -4,32 +4,156 @@
// TODO Matrix-Funktionen implementieren
//Matrix dimensionieren
Matrix createMatrix(unsigned int rows, unsigned int cols)
{
Matrix m; //Struktur anlegen, Varibale m von Typ Matrix
//Sonderfall aus Unit-Test, wenn rows == 0 oder cols == 0, darf kein Speicher allokiert werden
if(rows==0 || cols==0){
m.rows = 0;
m.cols = 0;
m.buffer = NULL;
return m;
}
//Normalfall
m.rows = rows; // strukurvariable.feldname --> Struktur-Zugriffsoperator
m.cols = cols;
m.buffer = malloc((rows * cols) * sizeof(MatrixType)); //Speicher reserviert für Elemente
return m;
}
void clearMatrix(Matrix *matrix)
{
// falls Speicher existiert (buffer NICHT NULL ist): freigeben
if(matrix->buffer != NULL)
{
free(matrix->buffer);// Speicher freigegeben aber zeigt irgendwo hin (dangling pointer)
}
//Matrix in definierten leeren Zustand setzen
matrix->buffer = NULL; // dangling pointer zurücksetzen
matrix->rows = 0;
matrix->cols = 0;
}
//Wert in Matrix schreiben und wo genau
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
{
// Sicherheit: wenn buffer == NULL (kein gültiger Speicher) oder Index außerhalb der Matrix --> return
if(matrix.buffer == NULL || rowIdx >= matrix.rows || colIdx >= matrix.cols)
{
return;
}
//index = Zeile * Anzahl_Spalten + Spalte
unsigned int index = rowIdx * matrix.cols + colIdx;
// Schreibt value direkt an die berechnete Position im Matrixspeicher
matrix.buffer[index] = value;
}
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
{
if (matrix.buffer == NULL || rowIdx >= matrix.rows || colIdx >= matrix.cols)
{
return 0;
}
unsigned int index = rowIdx * matrix.cols + colIdx;
return matrix.buffer[index];
}
Matrix add(const Matrix matrix1, const Matrix matrix2)
{
Matrix result;
//Zeilen müssen gleich sein
if (matrix1.rows != matrix2.rows)
{
result.rows = 0;
result.cols = 0;
result.buffer = NULL;
return result;
}
//Spalten müssen gleich sein (mit broadcasting)
//Fälle: gleiche Spalten ok, matrix1 hat 1 Spalte, matrix2 hat 1 Spalte
//sonst inkompatibel
if (matrix1.cols != matrix2.cols && matrix1.cols != 1 && matrix2.cols != 1)
{
result.rows = 0;
result.cols = 0;
result.buffer = NULL;
return result;
}
result.rows = matrix1.rows;
result.cols = (matrix1.cols > matrix2.cols) ? matrix1.cols : matrix2.cols;
result.buffer = malloc(result.rows * result.cols * sizeof(MatrixType));
for (unsigned int r = 0; r < result.rows; r++)
{
for (unsigned int c = 0; c < result.cols; c++)
{
// Bestimme Spalte für matrix1:
// Wenn nur 1 Spalte -> immer Spalte 0 benutzen
unsigned int c1 = (matrix1.cols == 1) ? 0 : c;
// Bestimme Spalte für matrix2:
unsigned int c2 = (matrix2.cols == 1) ? 0 : c;
MatrixType v1 = getMatrixAt(matrix1, r, c1);
MatrixType v2 = getMatrixAt(matrix2, r, c2);
setMatrixAt(v1 + v2, result, r, c);
}
}
return result;
}
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
{
Matrix result;
if(matrix1.cols != matrix2.rows)
{
result.rows = 0;
result.cols = 0;
result.buffer = NULL;
return result;
}
result.rows = matrix1.rows;
result.cols = matrix2.cols;
result.buffer = malloc(result.rows * result.cols * sizeof(MatrixType));
for (unsigned int r = 0; r < result.rows; r++)
{
for (unsigned int c = 0; c < result.cols; c++)
{
MatrixType sum = 0;
// gemeinsame Dimension = matrix1.cols = matrix2.rows
for (unsigned int i = 0; i < matrix1.cols; i++)
{
MatrixType a = getMatrixAt(matrix1, r, i);
MatrixType b = getMatrixAt(matrix2, i, c);
sum += a * b;
}
setMatrixAt(sum, result, r, c);
}
}
return result;
}

View File

@ -5,6 +5,13 @@
typedef float MatrixType;
// TODO Matrixtyp definieren
typedef struct {
unsigned int rows;
unsigned int cols;
MatrixType* buffer; //buffer Pointer zeigt auf Heap, mit malloc dort dann Speicher reservieren
} Matrix;
Matrix createMatrix(unsigned int rows, unsigned int cols);
void clearMatrix(Matrix *matrix);
@ -13,4 +20,5 @@ MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int co
Matrix add(const Matrix matrix1, const Matrix matrix2);
Matrix multiply(const Matrix matrix1, const Matrix matrix2);
#endif

BIN
matrix.o

Binary file not shown.

Binary file not shown.

View File

@ -2,30 +2,23 @@
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "unity.h"
#include "unity/unity.h"
#include "neuralNetwork.h"
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
//öffnet die Datei in Binär zum schreiben
FILE *file = fopen(path, "wb");
if (!file) return;
//Fester Headerstring
const char *tag = "__info2_neural_network_file_format__";
fwrite(tag, sizeof(char), strlen(tag), file);
if (nn.numberOfLayers == 0 || nn.layers == NULL) {
int zero = 0;
fwrite(&zero, sizeof(int), 1, file); // inputDim
fwrite(&zero, sizeof(int), 1, file); // outputDim
fclose(file);
return;
}
//Bestimmt die Eingabedimension
int inputDim = nn.layers[0].weights.cols;
fwrite(&inputDim, sizeof(int), 1, file);
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
const Layer *L = &nn.layers[i];
@ -33,12 +26,11 @@ static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
const Matrix *B = &L->biases;
int outputDim = W->rows;
fwrite(&outputDim, sizeof(int), 1, file);
//Anzahl der Weight-Werte
size_t weightCount = (size_t)(W->rows * W->cols);
fwrite(W->buffer, sizeof(MatrixType), weightCount, file);
fwrite(&weightCount, sizeof(size_t), 1, file);
//Anzahl der Bias-Werte
size_t biasCount = (size_t)(B->rows * B->cols);
fwrite(B->buffer, sizeof(MatrixType), biasCount, file);

Binary file not shown.

Binary file not shown.

Binary file not shown.