generated from freudenreichan/info2Praktikum-DobleSpiel
Finish numbers.c and add tests
This commit is contained in:
parent
624bc466a9
commit
624d75e7cd
138
numbers.c
138
numbers.c
@ -17,83 +17,113 @@
|
||||
// Vergleichsfunktion für qsort
|
||||
static int compareUnsignedInt(const void *a, const void *b)
|
||||
{
|
||||
const unsigned int *x = (const unsigned int *)a;
|
||||
const unsigned int *y = (const unsigned int *)b;
|
||||
const unsigned int *x = (const unsigned int *)a;
|
||||
const unsigned int *y = (const unsigned int *)b;
|
||||
|
||||
if (*x < *y) return -1;
|
||||
if (*x > *y) return 1;
|
||||
return 0;
|
||||
if (*x < *y) return -1;
|
||||
if (*x > *y) return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Fisher-Yates Shuffle Algorithmus zum Mischen des Arrays
|
||||
static void shuffleArray(unsigned int *array, unsigned int n)
|
||||
{
|
||||
if (n > 1)
|
||||
{
|
||||
for (unsigned int i = n - 1; i > 0; i--)
|
||||
{
|
||||
unsigned int j = rand() % (i + 1);
|
||||
unsigned int temp = array[i];
|
||||
array[i] = array[j];
|
||||
array[j] = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsigned int *createNumbers(unsigned int len)
|
||||
{
|
||||
if (len < 2) return NULL;
|
||||
|
||||
if (len < 2) {
|
||||
return NULL;
|
||||
}
|
||||
// 1. Array reservieren
|
||||
unsigned int *numbers = malloc(len * sizeof(unsigned int));
|
||||
if (numbers == NULL) return NULL;
|
||||
|
||||
unsigned int *numbers = malloc(len * sizeof(unsigned int));
|
||||
if (numbers == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
// Hilfsvariablen für den Baum
|
||||
TreeNode *root = NULL;
|
||||
int isDuplicate = 0;
|
||||
unsigned int count = 0;
|
||||
|
||||
for (unsigned int i = 0; i < len; ++i) {
|
||||
// 2. PHASE 1: Erzeuge (len - 1) EINZIGARTIGE Zahlen mit Hilfe des Baums
|
||||
// Wir nutzen den Baum als "Türsteher"
|
||||
while (count < len - 1)
|
||||
{
|
||||
// Zufallszahl generieren (1 bis 2*len)
|
||||
unsigned int value = (rand() % (2 * len)) + 1;
|
||||
|
||||
while (1) {
|
||||
unsigned int value = (rand() % (2 * len)) + 1;
|
||||
// Versuchen, in den Baum einzufügen
|
||||
// Wir übergeben &isDuplicate, damit der Baum Duplikate ABLEHNT.
|
||||
root = addToTree(root, &value, sizeof(unsigned int), compareUnsignedInt, &isDuplicate);
|
||||
|
||||
int exists = 0;
|
||||
for (unsigned int j = 0; j < i; ++j) {
|
||||
if (numbers[j] == value) {
|
||||
exists = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// Prüfen: War es ein Duplikat?
|
||||
if (isDuplicate == 0)
|
||||
{
|
||||
// Nein, es war neu! -> Ins Array schreiben
|
||||
numbers[count] = value;
|
||||
count++;
|
||||
}
|
||||
// Falls isDuplicate == 1, machen wir einfach weiter (while-Schleife läuft weiter)
|
||||
}
|
||||
|
||||
if (!exists) {
|
||||
numbers[i] = value;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// 3. PHASE 2: Das garantierte Duplikat erzeugen
|
||||
// Wir wählen zufällig eine der bereits existierenden Zahlen aus
|
||||
unsigned int randomIndex = rand() % (len - 1);
|
||||
unsigned int duplicateValue = numbers[randomIndex];
|
||||
|
||||
unsigned int idx1 = rand() % len;
|
||||
unsigned int idx2 = rand() % len;
|
||||
// Wir schreiben das Duplikat an die allerletzte Stelle
|
||||
numbers[len - 1] = duplicateValue;
|
||||
|
||||
while (idx2 == idx1) {
|
||||
idx2 = rand() % len;
|
||||
}
|
||||
// Optional: Duplikat auch in den Baum einfügen (Modus: Akzeptieren / isDuplicate = NULL)
|
||||
// Damit der Baum konsistent zum Array ist (falls man ihn später noch braucht).
|
||||
root = addToTree(root, &duplicateValue, sizeof(unsigned int), compareUnsignedInt, NULL);
|
||||
|
||||
numbers[idx2] = numbers[idx1];
|
||||
// 4. Mischen
|
||||
// Da das Duplikat jetzt immer ganz am Ende steht, müssen wir mischen.
|
||||
shuffleArray(numbers, len);
|
||||
|
||||
return numbers;
|
||||
// 5. Aufräumen
|
||||
// Der Baum war nur ein Hilfsmittel zur Überprüfung. Er wird jetzt gelöscht.
|
||||
// WICHTIG: Damit verhindern wir Memory Leaks [cite: 12]
|
||||
clearTree(root);
|
||||
|
||||
return numbers;
|
||||
}
|
||||
|
||||
// ... Hierunter bleibt die getDuplicate Funktion deines Kollegen unverändert ...
|
||||
// Sie ist korrekt implementiert laut Aufgabenstellung (mit qsort)[cite: 11, 43].
|
||||
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len)
|
||||
{
|
||||
if (numbers == NULL || len < 2) {
|
||||
return 0;
|
||||
}
|
||||
if (numbers == NULL || len < 2) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned int *copy = malloc(len * sizeof(unsigned int));
|
||||
if (copy == NULL) {
|
||||
return 0;
|
||||
}
|
||||
unsigned int *copy = malloc(len * sizeof(unsigned int));
|
||||
if (copy == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
memcpy(copy, numbers, len * sizeof(unsigned int));
|
||||
memcpy(copy, numbers, len * sizeof(unsigned int));
|
||||
|
||||
qsort(copy, len, sizeof(unsigned int), compareUnsignedInt);
|
||||
|
||||
qsort(copy, len, sizeof(unsigned int), compareUnsignedInt);
|
||||
unsigned int duplicate = 0;
|
||||
|
||||
unsigned int duplicate = 0;
|
||||
for (unsigned int i = 0; i + 1 < len; ++i) {
|
||||
if (copy[i] == copy[i + 1]) {
|
||||
duplicate = copy[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i + 1 < len; ++i) {
|
||||
if (copy[i] == copy[i + 1]) {
|
||||
duplicate = copy[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
free(copy);
|
||||
return duplicate;
|
||||
free(copy);
|
||||
return duplicate;
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user