/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "math.h" #include "stdbool.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ RTC_HandleTypeDef hrtc; UART_HandleTypeDef huart2; RTC_TimeTypeDef sTime; RTC_DateTypeDef sDate; RTC_AlarmTypeDef sAlarm; //Nuernberg coordinates int latitude_nbg = 49; int longitude_nbg = 11; //German UTC time,summer (+2) and winter (+1) int UTC_DER_sum = 2; int UTC_DER_win = 1; bool winterTime = true; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART2_UART_Init(void); static void MX_RTC_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /******************************************************************************* * Function Name : deg_to_rad * Description : converts degrees to radians * Return : angle in radians *******************************************************************************/ double deg_to_rad(double deg) { double rad = deg*(M_PI/180); return rad; } /******************************************************************************* * Function Name : rad_to_deg * Description : converts radians to degrees * Return : angle in degrees *******************************************************************************/ double rad_to_deg(double rad) { double deg = rad*(180/M_PI); return deg; } /******************************************************************************* * Function Name : leap_year_check * Description : checks if year is a leap year * Return : false: no leap year, true: leap year *******************************************************************************/ int leap_year_check(int year) { if((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)) { return true; } return false; } /******************************************************************************* * Function Name : calc_day_of_year * Description : calculates the day of year * Return : day of year (1.1.. = 1, 2.1.. = 2,...) * Source : https://overiq.com/c-examples/c-program-to-calculate-the-day-of-year-from-the-date/ *******************************************************************************/ int calc_day_of_year(int day, int mon, int year) { int days_in_feb = 28; int doy = day; //day of year // check for leap year bool leap_year = leap_year_check(year); if(leap_year == true) { days_in_feb = 29; } switch(mon) { case 2: doy += 31; break; case 3: doy += 31+days_in_feb; break; case 4: doy += days_in_feb+62; break; case 5: doy += days_in_feb+92; break; case 6: doy += days_in_feb+123; break; case 7: doy += days_in_feb+153; break; case 8: doy += days_in_feb+184; break; case 9: doy += days_in_feb+215; break; case 10: doy += days_in_feb+245; break; case 11: doy += days_in_feb+276; break; case 12: doy += days_in_feb+306; break; } return doy; } /******************************************************************************* * Function Name : calc_sunrise_sunset * Description : calculates the sunrise and sunset time of a specific date * Source : General Solar Position Calculations, NOAA Global Monitoring Division *******************************************************************************/ void calc_sunrise_sunset(int date, int month, int year, int sunrise_time[2], int sunset_time[2]) { double gamma = 0; bool leap_year; double eqtime = 0; double decl = 0; double decl_deg = 0; double zenith_sun = 0; double lat_nbg_rad = 0; double ha = 0; double sunrise = 0; double sunset = 0; double ha_deg = 0; int sunrise_h = 0; int sunset_h = 0; double sunrise_min = 0; double sunset_min = 0; int int_sunrise_min = 0; int int_sunset_min = 0; //day of year calculation int day_of_year = calc_day_of_year(date, month, year); // fractional year (γ) in radians // check for leap year leap_year = leap_year_check(year); if(leap_year == false) { //The back part of the formula was omitted, because there is no difference in the result gamma = ((2 * M_PI)/365)*(day_of_year - 1); } else { //The back part of the formula was omitted, because there is no difference in the result gamma = ((2 * M_PI)/366)*(day_of_year - 1); } //Equation of time in minutes eqtime = 229.18*(0.000075 + 0.001868*cos(gamma) - 0.032077*sin(gamma) - 0.014615*cos(2*gamma) - 0.040849*sin(2*gamma)); //Solar declination angle in radians decl = 0.006918 - 0.399912*cos(gamma) + 0.070257*sin(gamma) - 0.006758*cos(2*gamma) + 0.000907*sin(2*gamma) - 0.002697*cos(3*gamma) + 0.00148*sin(3*gamma); //Solar declination angle in degrees decl_deg = rad_to_deg(decl); //Hour angle in degrees, positive number corresponds to sunrise, negative to sunset //special case of sunrise or sunset, the zenith is set to 90.833Deg zenith_sun = deg_to_rad(90.833); //Latitude of Nuernberg in rad lat_nbg_rad = deg_to_rad(latitude_nbg); ha = acos((cos(zenith_sun)/(cos(lat_nbg_rad)*cos(decl)))-(tan(lat_nbg_rad)*tan(decl))); ha_deg = rad_to_deg(ha); //UTC time of sunrise (or sunset) in minutes sunrise = (720-4*(longitude_nbg+ha_deg)-eqtime); sunset = 720-4*(longitude_nbg-ha_deg)-eqtime; //Convert sunrise (or sunset) UTC time in hours sunrise = sunrise/60; sunset = sunset/60; //Seperate hours and minutes sunrise_h = floor(sunrise); sunrise_min = sunrise - sunrise_h; //Cut off after two decimal places int_sunrise_min = floor(sunrise_min * 100.0); if (int_sunrise_min >= 60) { sunrise_h = sunrise_h + 1; int_sunrise_min = int_sunrise_min - 60; } sunset_h = floor(sunset); sunset_min = sunset - sunset_h; //Cut off after two decimal places int_sunset_min = floor(sunset_min * 100.0); if (int_sunset_min >= 60) { sunset_h = sunset_h + 1; int_sunset_min = int_sunset_min - 60; } //Add time difference from German time to UTC Time //Private variable winterTime must be initialized accordingly if (winterTime) { sunrise_h = sunrise_h + UTC_DER_win; sunset_h = sunset_h + UTC_DER_win; } else { sunrise_h = sunrise_h + UTC_DER_sum; sunset_h = sunset_h + UTC_DER_sum; } sunrise_time[0] = sunrise_h; sunrise_time[1] = int_sunrise_min; sunset_time[0] = sunset_h; sunset_time[1] = int_sunset_min; } /******************************************************************************* * Function Name : calc_tomorrows_date * Description : calculates tomorrow's date * Source : https://github.com/vyacht/stm32/blob/master/vynmea/rtc.c *******************************************************************************/ void calc_tomorrows_date(int day, int wday, int month, int year, int DaysInMonth[12], int tomorrows_date[4]) { bool leap_year; day++; // next day wday++; // next weekday if(wday == 8) { wday = 1; // Monday } if(day > DaysInMonth[month-1]) { // next month day = 1; month++; } if(day > 31 && month == 12) // next year { day = 1; month = 1; year++; } tomorrows_date[0] = day; tomorrows_date[1] = wday; tomorrows_date[2] = month; tomorrows_date[3] = year; } /******************************************************************************* * Function Name : set_Alarm * Description : sets the wake up Alarm *******************************************************************************/ void set_Alarm(int h, int min, int weekDay) { /** Enable the Alarm A*/ sAlarm.AlarmTime.Hours = h; sAlarm.AlarmTime.Minutes = min; sAlarm.AlarmTime.Seconds = 0; sAlarm.AlarmTime.SubSeconds = 0; sAlarm.AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; sAlarm.AlarmTime.StoreOperation = RTC_STOREOPERATION_RESET; sAlarm.AlarmMask = RTC_ALARMMASK_NONE; //only by specific time sAlarm.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_ALL; sAlarm.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_WEEKDAY; sAlarm.AlarmDateWeekDay = weekDay; sAlarm.Alarm = RTC_ALARM_A; if (HAL_RTC_SetAlarm_IT(&hrtc, &sAlarm, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } } // sending to UART void transmit_uart(char *string){ uint8_t len = strlen(string); HAL_UART_Transmit(&huart2, (uint8_t*) string, len, 200); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART2_UART_Init(); MX_RTC_Init(); /* USER CODE BEGIN 2 */ int hours = 0; int minutes = 0; int seconds = 0; int weekDay = 0; int month = 0; int date = 0; int year = 0; int sunrise_h = 0; int sunset_h = 0; int int_sunrise_min = 0; int int_sunset_min = 0; int sunrise_time[2] = {0}; int sunset_time[2] = {0}; int tomorrows_date[4] = {0}; int DaysInMonth[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; int DaysInMonthLeapYear[12] = {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; bool leap_year = false; /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { //Get Time and Date if (HAL_RTC_GetTime(&hrtc, &sTime, RTC_FORMAT_BIN) == HAL_OK) { hours = sTime.Hours; minutes = sTime.Minutes; seconds = sTime.Seconds; } if (HAL_RTC_GetDate(&hrtc, &sDate, RTC_FORMAT_BIN) == HAL_OK) { weekDay = sDate.WeekDay; month = sDate.Month; date = sDate.Date; year = 2000 + sDate.Year; } // check for leap year leap_year = leap_year_check(year); if (leap_year) { //Calculate tomorrow's date calc_tomorrows_date(date, weekDay, month, year, DaysInMonthLeapYear, tomorrows_date); } else { //Calculate tomorrow's date calc_tomorrows_date(date, weekDay, month, year, DaysInMonth, tomorrows_date); } //Calculate sunrise and sunset time for tomorrow calc_sunrise_sunset(tomorrows_date[0], tomorrows_date[2], tomorrows_date[3], sunrise_time, sunset_time); set_Alarm(16, 22, 1); HAL_Delay(5000); transmit_uart("Ich gehe schlafen!\r\n"); // Suspend Tick increment to prevent wake up by Systick interrupt HAL_SuspendTick(); HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI); //Interrupt for wake up HAL_ResumeTick(); transmit_uart("Bin wieder wach!\r\n"); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { Error_Handler(); } } /** * @brief RTC Initialization Function * @param None * @retval None */ static void MX_RTC_Init(void) { /* USER CODE BEGIN RTC_Init 0 */ /* USER CODE END RTC_Init 0 */ /* USER CODE BEGIN RTC_Init 1 */ /* USER CODE END RTC_Init 1 */ /** Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.HourFormat = RTC_HOURFORMAT_24; hrtc.Init.AsynchPrediv = 127; hrtc.Init.SynchPrediv = 255; hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN Check_RTC_BKUP */ /* USER CODE END Check_RTC_BKUP */ /** Initialize RTC and set the Time and Date */ sTime.Hours = 16; sTime.Minutes = 20; sTime.Seconds = 30; sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; sTime.StoreOperation = RTC_STOREOPERATION_RESET; if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } sDate.WeekDay = RTC_WEEKDAY_MONDAY; sDate.Month = RTC_MONTH_JANUARY; sDate.Date = 11; sDate.Year = 21; if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN RTC_Init 2 */ /* USER CODE END RTC_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : B1_Pin */ GPIO_InitStruct.Pin = B1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : LD2_Pin */ GPIO_InitStruct.Pin = LD2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } /** * @brief Alarm callback * @param hrtc: RTC handle * @retval None */ void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc) { /* Alarm generation */ transmit_uart("Alarm!!!!\r\n"); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/