/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "fatfs.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "math.h" #include "stdbool.h" #include "string.h" #include #include "fatfs_sd.h" #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ SPI_HandleTypeDef hspi1; ADC_HandleTypeDef hadc1; RTC_HandleTypeDef hrtc; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ RTC_TimeTypeDef sTime; RTC_DateTypeDef sDate; RTC_AlarmTypeDef sAlarmA, sAlarmB; static volatile uint16_t gLastError; static volatile bool gButtonPressed = FALSE; //Nuremberg coordinates int latitude_nbg = 49; int longitude_nbg = 11; //German UTC time,summer (+2) and winter (+1) int UTC_DER_sum = 2; int UTC_DER_win = 1; bool winterTime = true; int DaysInMonth[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; int DaysInMonthLeapYear[12] = {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; bool leapYear = false; int stepsFor180Deg = 1600; // The stepper motor needs 200 single steps for 360 deg, equals 100 steps for 180 deg, 180 Deg in 1/16 steps equals 1600 1/16 steps int leapsFor180Deg = 80; // Determines how big the amount of single steps is to complete 180 degrees of rotation, 80 ^= 1600/80 1/16 Steps tom complete 180 deg bool alarmSunriseFlag = false; bool alarmSunsetFlag = false; bool makeStepFlag = false; /* Initialization parameters. */ l6208_Init_t initDeviceParameters = { 1500, //Acceleration rate in step/s^2 or (1/16)th step/s^2 for microstep modes 20, //Acceleration current torque in % (from 0 to 100) 1500, //Deceleration rate in step/s^2 or (1/16)th step/s^2 for microstep modes 20, //Deceleration current torque in % (from 0 to 100) 1500, //Running speed in step/s or (1/16)th step/s for microstep modes 10, //Running current torque in % (from 0 to 100) 5, //Holding current torque in % (from 0 to 100) STEP_MODE_1_16, //Step mode via enum motorStepMode_t FAST_DECAY, //Decay mode via enum motorDecayMode_t 0, //Dwelling time in ms FALSE, //Automatic HIZ STOP 100000 //VREFA and VREFB PWM frequency (Hz) }; typedef struct { int hours; int minutes; int seconds; int weekDay; int month; int day; int year; } timeAndDate; // SD CARD Variables FATFS fs; FATFS *pfs; FIL fil; FRESULT fres; DWORD fre_clust; uint32_t totalSpace, freeSpace; char buffer[100]; uint16_t AD_RES; int num; char filename[12]; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART2_UART_Init(void); static void MX_RTC_Init(void); static void MX_SPI1_Init(void); static void MX_ADC1_Init(void); static void MyFlagInterruptHandler(void); void MyErrorHandler(uint16_t error); void ButtonHandler(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /******************************************************************************* * Function Name : deg_to_rad * Description : converts degrees to radians * Return : angle in radians *******************************************************************************/ double deg_to_rad(double deg) { double rad = deg*(M_PI/180); return rad; } /******************************************************************************* * Function Name : rad_to_deg * Description : converts radians to degrees * Return : angle in degrees *******************************************************************************/ double rad_to_deg(double rad) { double deg = rad*(180/M_PI); return deg; } /******************************************************************************* * Function Name : leap_year_check * Description : checks if year is a leap year * Return : false: no leap year, true: leap year *******************************************************************************/ void leap_year_check(int initialyear) { int year = initialyear; if((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)) { leapYear = true; } else { leapYear = false; } } /******************************************************************************* * Function Name : calc_day_of_year * Description : calculates the day of year * Return : day of year (1.1.. = 1, 2.1.. = 2,...) * Source : https://overiq.com/c-examples/c-program-to-calculate-the-day-of-year-from-the-date/ *******************************************************************************/ int calc_day_of_year(int day, int mon, int year) { int days_in_feb = 28; int doy = day; //day of year // check for leap year //bool leap_year = leap_year_check(year); if(leapYear == true) { days_in_feb = 29; } switch(mon) { case 2: doy += 31; break; case 3: doy += 31+days_in_feb; break; case 4: doy += days_in_feb+62; break; case 5: doy += days_in_feb+92; break; case 6: doy += days_in_feb+123; break; case 7: doy += days_in_feb+153; break; case 8: doy += days_in_feb+184; break; case 9: doy += days_in_feb+215; break; case 10: doy += days_in_feb+245; break; case 11: doy += days_in_feb+276; break; case 12: doy += days_in_feb+306; break; } return doy; } /******************************************************************************* * Function Name : calc_sunrise_sunset * Description : calculates the sunrise and sunset time of a specific date * Source : General Solar Position Calculations, NOAA Global Monitoring Division *******************************************************************************/ void calc_sunrise_sunset(timeAndDate* initialDate, timeAndDate* sunriseStruct, timeAndDate* sunsetStruct, timeAndDate* tomorrowsDate) { double gamma = 0; double eqtime = 0; double decl = 0; //double decl_deg = 0; double zenith_sun = 0; double lat_nbg_rad = 0; double ha = 0; double sunrise = 0; double sunset = 0; double ha_deg = 0; int sunrise_h = 0; int sunset_h = 0; double sunrise_min = 0; double sunset_min = 0; int int_sunrise_min = 0; int int_sunset_min = 0; int day = initialDate->day; int month = initialDate->month; int year = initialDate->year; //day of year calculation int day_of_year = calc_day_of_year(day, month, year); // fractional year (γ) in radians // check for leap year //leap_year = leap_year_check(year); if(leapYear == false) { //The back part of the formula was omitted, because there is no difference in the result gamma = ((2 * M_PI)/365)*(day_of_year - 1); } else { //The back part of the formula was omitted, because there is no difference in the result gamma = ((2 * M_PI)/366)*(day_of_year - 1); } //Equation of time in minutes eqtime = 229.18*(0.000075 + 0.001868*cos(gamma) - 0.032077*sin(gamma) - 0.014615*cos(2*gamma) - 0.040849*sin(2*gamma)); //Solar declination angle in radians decl = 0.006918 - 0.399912*cos(gamma) + 0.070257*sin(gamma) - 0.006758*cos(2*gamma) + 0.000907*sin(2*gamma) - 0.002697*cos(3*gamma) + 0.00148*sin(3*gamma); //Solar declination angle in degrees //decl_deg = rad_to_deg(decl); //Hour angle in degrees, positive number corresponds to sunrise, negative to sunset //special case of sunrise or sunset, the zenith is set to 90.833Deg zenith_sun = deg_to_rad(90.833); //Latitude of Nuernberg in rad lat_nbg_rad = deg_to_rad(latitude_nbg); ha = acos((cos(zenith_sun)/(cos(lat_nbg_rad)*cos(decl)))-(tan(lat_nbg_rad)*tan(decl))); ha_deg = rad_to_deg(ha); //UTC time of sunrise (or sunset) in minutes sunrise = (720-4*(longitude_nbg+ha_deg)-eqtime); sunset = 720-4*(longitude_nbg-ha_deg)-eqtime; //Convert sunrise (or sunset) UTC time in hours sunrise = sunrise/60; sunset = sunset/60; //Seperate hours and minutes sunrise_h = floor(sunrise); sunrise_min = sunrise - sunrise_h; //Cut off after two decimal places int_sunrise_min = floor(sunrise_min * 100.0); if (int_sunrise_min >= 60) { sunrise_h = sunrise_h + 1; int_sunrise_min = int_sunrise_min - 60; } sunset_h = floor(sunset); sunset_min = sunset - sunset_h; //Cut off after two decimal places int_sunset_min = floor(sunset_min * 100.0); if (int_sunset_min >= 60) { sunset_h = sunset_h + 1; int_sunset_min = int_sunset_min - 60; } //Add time difference from German time to UTC Time //Private variable winterTime must be initialized accordingly if (winterTime) { sunrise_h = sunrise_h + UTC_DER_win; sunset_h = sunset_h + UTC_DER_win; } else { sunrise_h = sunrise_h + UTC_DER_sum; sunset_h = sunset_h + UTC_DER_sum; } sunriseStruct->hours = sunrise_h; sunriseStruct->minutes = int_sunrise_min; sunsetStruct->hours = sunset_h; sunsetStruct->minutes = int_sunset_min; sunriseStruct->day = sunsetStruct->day = tomorrowsDate->day; sunriseStruct->weekDay = sunsetStruct->weekDay = tomorrowsDate->weekDay; sunriseStruct->month = sunsetStruct->month = tomorrowsDate->month; sunriseStruct->year = sunsetStruct->year = tomorrowsDate->year; } /******************************************************************************* * Function Name : calc_tomorrows_date * Description : calculates tomorrow's date * Source : https://github.com/vyacht/stm32/blob/master/vynmea/rtc.c *******************************************************************************/ void calc_tomorrows_date(timeAndDate* initialDate, timeAndDate* tomorrowsDate) { int yearToUse[12]; if (leapYear == true){ memcpy(yearToUse, DaysInMonthLeapYear, sizeof yearToUse); } else { memcpy(yearToUse, DaysInMonth, sizeof yearToUse); } int day = initialDate->day; int wday = initialDate->weekDay; int month = initialDate->month; int year = initialDate->year; day++; // next day wday++; // next weekday if(wday == 8) { wday = 1; // Monday } if(day > yearToUse[month-1]) { // next month day = 1; month++; } if(day > 31 && month == 12) // next year { day = 1; month = 1; year++; } tomorrowsDate->day = day; tomorrowsDate->weekDay = wday; tomorrowsDate->month = month; tomorrowsDate->year = year; } /******************************************************************************* * Function Name : set_alarm * Description : sets alarm A or B *******************************************************************************/ void set_alarm(int h, int min, int weekDay, char* alarm, RTC_AlarmTypeDef* alarmInstance) { /** Enable the Alarm A*/ alarmInstance->AlarmTime.Hours = h; alarmInstance->AlarmTime.Minutes = min; alarmInstance->AlarmTime.Seconds = 0; alarmInstance->AlarmTime.SubSeconds = 0; alarmInstance->AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; alarmInstance->AlarmTime.StoreOperation = RTC_STOREOPERATION_RESET; alarmInstance->AlarmMask = RTC_ALARMMASK_NONE; //only by specific time alarmInstance->AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_ALL; alarmInstance->AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_WEEKDAY; alarmInstance->AlarmDateWeekDay = weekDay; if (strcmp("A", alarm) == 0) { alarmInstance->Alarm = RTC_ALARM_A; } else { alarmInstance->Alarm = RTC_ALARM_B; } if (HAL_RTC_SetAlarm_IT(&hrtc, alarmInstance, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } } /******************************************************************************* * Function Name : transmit_uart * Description : Transmit a string over uart *******************************************************************************/ void transmit_uart(char *string){ uint8_t len = strlen(string); HAL_UART_Transmit(&huart2, (uint8_t*) string, len, 200); } /*************************************************************************************************** * Function Name : set_time_and_date * Description : Overwriting the date given in timeanddate with the current time and date from rtc ****************************************************************************************************/ void set_time_and_date(timeAndDate *timeanddate){ if (HAL_RTC_GetTime(&hrtc, &sTime, RTC_FORMAT_BIN) == HAL_OK) { timeanddate->hours = sTime.Hours; timeanddate->minutes = sTime.Minutes; timeanddate->seconds = sTime.Seconds; } if (HAL_RTC_GetDate(&hrtc, &sDate, RTC_FORMAT_BIN) == HAL_OK) { timeanddate->weekDay = sDate.WeekDay; timeanddate->month = sDate.Month; timeanddate->day = sDate.Date; timeanddate->year = 2000 + sDate.Year; } } /******************************************************************************* * Function Name : calc_interval_duration * Description : Calculate the duration between the two given time/dates * Return : The duration as an integer *******************************************************************************/ int calc_interval_duration(timeAndDate *sunrise, timeAndDate *sunset){ int duration_h=0; int duration_m=0; int duration=0; duration_h = sunset->hours - sunrise->hours; duration_m = sunset->minutes - sunrise->minutes; if (duration_m < 0) { duration_h = duration_h - 1; duration_m = 60 - sunrise->minutes + sunset->minutes; } duration = (duration_h * 60 + duration_m) / leapsFor180Deg; return duration; } /******************************************************************************* * Function Name : generate_filename * Description : Short function to generate a filename with the current date *******************************************************************************/ void generate_filename(timeAndDate *date){ sprintf(filename, "%02d%02d%02d.txt", date->year, date->month, date->day); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART2_UART_Init(); MX_RTC_Init(); MX_SPI1_Init(); MX_FATFS_Init(); MX_ADC1_Init(); /* USER CODE BEGIN 2 */ //######### Inits of the Motor control library ######### /* Set the L6208 library to use 1 device */ BSP_MotorControl_SetNbDevices(BSP_MOTOR_CONTROL_BOARD_ID_L6208, 1); BSP_MotorControl_Init(BSP_MOTOR_CONTROL_BOARD_ID_L6208, &initDeviceParameters); //BSP_MotorControl_Init(BSP_MOTOR_CONTROL_BOARD_ID_L6208, NULL); //Default params /* Attach the function MyFlagInterruptHandler (defined below) to the flag interrupt */ BSP_MotorControl_AttachFlagInterrupt(MyFlagInterruptHandler); /* Attach the function MyErrorHandler (defined below) to the error Handler*/ BSP_MotorControl_AttachErrorHandler(MyErrorHandler); /* Set Systick Interrupt priority highest to ensure no lock by using HAL_Delay */ HAL_NVIC_SetPriority(SysTick_IRQn, 0x0, 0x0); /* Configure KEY Button */ //BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_EXTI); /* Disable the power bridges after initialization */ BSP_MotorControl_CmdDisable(0); int32_t pos=0; uint32_t freqPwm=0; freqPwm = BSP_MotorControl_GetBridgeInputPwmFreq(0); BSP_MotorControl_SetBridgeInputPwmFreq(0, freqPwm>>1); // current position pos = BSP_MotorControl_GetPosition(0); // set current position to home BSP_MotorControl_SetHome(0, pos); //######### Mount SD-Card ######### /* The SD Card is not working at the moment due to getting FR_NOT_READY * when connecting the SD Card Pins with the SPI Pins on the mounted X-NUCLEO Motor driver. * When dismounting the motor driver and connecting it via cables, there is unusual behaviour of the motor mnovement. * The SD Card though, works when the SD Card Breakout is connected directly to the NUCLEO board. * fres = f_mount(&fs, "", 0); if (fres == FR_OK) { transmit_uart("SD card is mounted successfully!\r\n"); } else if (fres != FR_OK) { transmit_uart("SD card is not mounted!\r\n"); } */ //######### Start ADC Conversion ######### HAL_ADC_Start(&hadc1); //######### Variable inits ######### timeAndDate sunrise, sunset, wakeUpTimeForStep, tomorrowsDate, initialDate; sunrise = sunset = wakeUpTimeForStep = tomorrowsDate = initialDate = (timeAndDate) {\ 0, 0, 0, 0, 0, 0, 0 }; uint32_t timeToNextStep=0; uint32_t alarmB_h = 0; uint32_t alarmB_m = 0; uint32_t alarmB_wd = 0; uint32_t stepsToMake = stepsFor180Deg / leapsFor180Deg; // The amount of single steps to make to complete 180/x degrees ^= 1600/x /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { HAL_Delay(2000); transmit_uart("Resetting motor position and calculating new dates and times.\r\n"); BSP_MotorControl_GoHome(0); BSP_MotorControl_WaitWhileActive(0); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ set_time_and_date(&initialDate); leap_year_check(initialDate.year); calc_tomorrows_date(&initialDate, &tomorrowsDate); generate_filename(&tomorrowsDate); //######### SD Card Write ######### /* The SD Card is not working at the moment due to getting FR_NOT_READY * when connecting the SD Card Pins with the SPI Pins on the mounted X-NUCLEO Motor driver. * When dismounting the motor driver and connecting it via cables, there is unusual behaviour of the motor mnovement. * The SD Card though, works when the SD Card Breakout is connected directly to the NUCLEO board. * // Open file with tomorrows date as file name fres = f_open(&fil, filename, FA_OPEN_APPEND | FA_WRITE | FA_READ); if (fres == FR_OK) { transmit_uart("File opened.\r\n"); } else if (fres != FR_OK) { transmit_uart("File was not opened!\r\n"); } f_puts("Data", &fil); //Close file fres = f_close(&fil); if (fres == FR_OK) { transmit_uart("File is closed.\r\n"); } else if (fres != FR_OK) { transmit_uart("File was not closed.\r\n"); } */ //Calculate sunrise and sunset time for tomorrow calc_sunrise_sunset(&initialDate, &sunrise, &sunset, &tomorrowsDate); //Test code sunrise.hours = 7; sunrise.minutes = 25; sunrise.weekDay = 1; sunset.hours = 18; sunset.minutes = 13; sunset.weekDay = 1; //Calculate the time for next motor step in minutes timeToNextStep = calc_interval_duration(&sunrise, &sunset); // Set Alarm for sunrise transmit_uart("Setting alarm for sunrise.\r\n"); set_alarm(sunrise.hours, sunrise.minutes, sunrise.weekDay, "A", &sAlarmA); HAL_Delay(2000); transmit_uart("Entering sleep mode.\r\n"); HAL_SuspendTick(); HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI); HAL_ResumeTick(); if (alarmSunriseFlag == true) { transmit_uart("Sunrise statement entered.\r\n"); // Reset the flags alarmSunsetFlag = false; alarmSunriseFlag = false; // The alarm for the next step is incremented from sunrise as the initial time. alarmB_h = sunrise.hours; alarmB_m = sunrise.minutes; alarmB_wd = sunrise.weekDay; // Set Alarm for sunset, it overwrites the alarm for sunrise because the sunrise already happenend // The timeframes for both alarms dont overlap so 1 alarm is enough transmit_uart("Setting alarm for sunset.\r\n"); set_alarm(sunset.hours, sunset.minutes, sunset.weekDay, "A", &sAlarmA); HAL_Delay(2000); while (alarmSunsetFlag != true) { transmit_uart("|--------------------------------------------------------|\r\n\r\n"); // Increment alarm time with the precalculated timeToNextStep float minAdd_tmp=0; minAdd_tmp = alarmB_m + timeToNextStep; // Consider minutes overflow ^= hours + 1 if (minAdd_tmp > 60) { alarmB_h = alarmB_h + 1; alarmB_m = minAdd_tmp - 60; } else { alarmB_m = minAdd_tmp; } transmit_uart("Setting alarm for next step.\r\n"); set_alarm(alarmB_h, alarmB_m, alarmB_wd, "B", &sAlarmB); HAL_Delay(2000); transmit_uart("Entering sleep mode.\r\n"); HAL_SuspendTick(); HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI); HAL_ResumeTick(); if (makeStepFlag) { // Poll ADC1 Perihperal & TimeOut = 1mSec HAL_ADC_PollForConversion(&hadc1, 1); // Read The ADC Conversion Result AD_RES = HAL_ADC_GetValue(&hadc1); transmit_uart("Making a step.\r\n"); BSP_MotorControl_Move(0, FORWARD, stepsToMake); BSP_MotorControl_WaitWhileActive(0); } makeStepFlag = true; transmit_uart("\r\n"); }; } BSP_MotorControl_GoHome(0); BSP_MotorControl_WaitWhileActive(0); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; //RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.HSICalibrationValue = 16; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { Error_Handler(); } } /** * @brief RTC Initialization Function * @param None * @retval None */ static void MX_RTC_Init(void) { /* USER CODE BEGIN RTC_Init 0 */ /* USER CODE END RTC_Init 0 */ RTC_TimeTypeDef sTime = {0}; RTC_DateTypeDef sDate = {0}; RTC_AlarmTypeDef sAlarm = {0}; /* USER CODE BEGIN RTC_Init 1 */ /* USER CODE END RTC_Init 1 */ /** Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.HourFormat = RTC_HOURFORMAT_24; hrtc.Init.AsynchPrediv = 127; hrtc.Init.SynchPrediv = 255; hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN Check_RTC_BKUP */ /* USER CODE END Check_RTC_BKUP */ /** Initialize RTC and set the Time and Date */ sTime.Hours = 7; sTime.Minutes = 20; sTime.Seconds = 10; sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; sTime.StoreOperation = RTC_STOREOPERATION_RESET; if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } sDate.WeekDay = RTC_WEEKDAY_MONDAY; sDate.Month = RTC_MONTH_FEBRUARY; sDate.Date = 21; sDate.Year = 21; if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } /** Enable the Alarm A */ sAlarm.AlarmTime.Hours = 0; sAlarm.AlarmTime.Minutes = 0; sAlarm.AlarmTime.Seconds = 0; sAlarm.AlarmTime.SubSeconds = 0; sAlarm.AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; sAlarm.AlarmTime.StoreOperation = RTC_STOREOPERATION_RESET; sAlarm.AlarmMask = RTC_ALARMMASK_NONE; sAlarm.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_ALL; sAlarm.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_DATE; sAlarm.AlarmDateWeekDay = 1; sAlarm.Alarm = RTC_ALARM_A; if (HAL_RTC_SetAlarm_IT(&hrtc, &sAlarm, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } /** Enable the Alarm B */ sAlarm.AlarmDateWeekDay = 1; sAlarm.Alarm = RTC_ALARM_B; if (HAL_RTC_SetAlarm_IT(&hrtc, &sAlarm, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN RTC_Init 2 */ /* USER CODE END RTC_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET); /*Configure GPIO pin : B1_Pin */ GPIO_InitStruct.Pin = B1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : LD2_Pin */ GPIO_InitStruct.Pin = LD2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : PB6 */ GPIO_InitStruct.Pin = GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief SPI1 Initialization Function * @param None * @retval None */ static void MX_SPI1_Init(void) { /* USER CODE BEGIN SPI1_Init 0 */ /* USER CODE END SPI1_Init 0 */ /* USER CODE BEGIN SPI1_Init 1 */ /* USER CODE END SPI1_Init 1 */ /* SPI1 parameter configuration*/ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI1_Init 2 */ /* USER CODE END SPI1_Init 2 */ } /* USER CODE BEGIN 4 */ /** * @brief Alarm callback * @param hrtc: RTC handle * @retval None */ void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc) { /* Alarm generation */ alarmSunriseFlag = true; alarmSunsetFlag = true; transmit_uart("Alarm A Callback triggered.\r\n"); transmit_uart("Setting sunrise and sunset flags.\r\n"); } void HAL_RTCEx_AlarmBEventCallback(RTC_HandleTypeDef *hrtc) { /* Alarm generation */ makeStepFlag = true; transmit_uart("Alarm B Callback triggered.\r\n"); transmit_uart("Setting makeStep flag.\r\n"); } /** * @brief This function is the User handler for the flag interrupt * @param None * @retval None */ void MyFlagInterruptHandler(void) { //When EN pin is forced low by a failure, configure the GPIO as an ouput low BSP_MotorControl_CmdDisable(0); } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } void MyErrorHandler(uint16_t error) { // Motor error handler /* Backup error number */ gLastError = error; /* Infinite loop */ while(1) { } } void ButtonHandler(void) { gButtonPressed = TRUE; /* Let 200 ms before clearing the IT for key debouncing */ HAL_Delay(200); __HAL_GPIO_EXTI_CLEAR_IT(KEY_BUTTON_PIN); HAL_NVIC_ClearPendingIRQ(KEY_BUTTON_EXTI_IRQn); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/