Merge branch 'neuer_ansatz_bildverarbeitung' of yasarba71520/Line-Following-Robot into master
This commit is contained in:
commit
bb16b602a7
@ -15,14 +15,14 @@ Mat Input::readFile(String filePath)
|
||||
{
|
||||
std::srand(std::time(0));
|
||||
// Read all .jpg files from the specified folder
|
||||
std::string folder = filePath;
|
||||
std::vector<std::string> filenames;
|
||||
cv::String folder = filePath;
|
||||
std::vector<cv::String> filenames;
|
||||
cv::glob(folder, filenames);
|
||||
|
||||
// Random shuffle
|
||||
std::random_shuffle(filenames.begin(), filenames.end());
|
||||
|
||||
Mat image = imread(filenames[0], IMREAD_COLOR);
|
||||
Mat image = imread(filePath, IMREAD_COLOR);
|
||||
|
||||
if(image.empty())
|
||||
{
|
||||
@ -39,16 +39,19 @@ Mat Input::readWebcam()
|
||||
Mat image;
|
||||
|
||||
if(!cap.isOpened()) {
|
||||
cout << "Fehler";
|
||||
cout << "Video capture not opened" << std::endl;
|
||||
return Mat();
|
||||
}
|
||||
|
||||
cap.read(image);
|
||||
|
||||
if(!cap.grab()) {
|
||||
cout << "Could not grab frame from camera" << std::endl;
|
||||
return Mat();
|
||||
}
|
||||
cap.retrieve(image);
|
||||
return image;
|
||||
}
|
||||
|
||||
void Input::freeWebcam()
|
||||
{
|
||||
this->cap.release();
|
||||
}
|
||||
}
|
||||
|
@ -24,19 +24,37 @@ void Processing::processImage(Mat& inputPicture, int thresholdBinary, int gaussK
|
||||
// And one (the other one) to segment the lines.
|
||||
// No return value here as the input is passed by reference -> directly modified.
|
||||
cvtColor(inputPicture, inputPicture, COLOR_BGR2GRAY);
|
||||
threshold(inputPicture, inputPicture, thresholdBinary, 255, THRESH_BINARY);
|
||||
GaussianBlur(inputPicture, inputPicture, Size(gaussKernelSize, gaussKernelSize), 0);
|
||||
Canny(inputPicture, inputPicture, thresholdCanny1, thresholdCanny2, apertureSizeCanny);
|
||||
threshold(inputPicture, inputPicture, thresholdBinary, 255, THRESH_BINARY);
|
||||
|
||||
//Perform a opening
|
||||
Mat kernel(5,5, CV_8UC1,1);
|
||||
morphologyEx(inputPicture, inputPicture, 2, kernel);
|
||||
}
|
||||
|
||||
std::vector<Vec4i> Processing::calculateLineSegments(const Mat& inputPicture)
|
||||
FrameData Processing::calculateLineSegments(const Mat& inputPicture, const cv::Rect& roi)
|
||||
{
|
||||
//See following link
|
||||
//https://stackoverflow.com/questions/45322630/how-to-detect-lines-in-opencv
|
||||
vector<Vec4i> lines;
|
||||
VectorOfLines linesInVectors;
|
||||
HoughLinesP(inputPicture, lines, 1, CV_PI/360, 150, 0, 250);
|
||||
//lines = linesInVectors.findMiddleLine(lines);
|
||||
|
||||
return lines;
|
||||
FrameData data;
|
||||
cv::findContours(inputPicture, data.contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
|
||||
|
||||
//Delete the areas that are too small
|
||||
auto iterator = data.contours.begin();
|
||||
while(iterator != data.contours.end())
|
||||
{
|
||||
if (contourArea(*iterator) < 3500)
|
||||
{
|
||||
iterator = data.contours.erase(iterator);
|
||||
}
|
||||
else
|
||||
{
|
||||
Rect boundingBox = boundingRect(*iterator);
|
||||
boundingBox.x += roi.x;
|
||||
boundingBox.y += roi.y;
|
||||
data.boundingBoxes.push_back(boundingBox);
|
||||
data.middlePoints.push_back(Point(boundingBox.x+boundingBox.width/2, boundingBox.y+boundingBox.height/2));
|
||||
data.leftEdges.push_back(Point(boundingBox.x, boundingBox.y+boundingBox.height/2));
|
||||
++iterator;
|
||||
}
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
@ -21,5 +21,5 @@ public:
|
||||
|
||||
void processImage(Mat& inputPicture, int thresholdBinary, int gaussKernelSize, int thresholdCanny1, int thresholdCanny2, int apertureSizeCanny);
|
||||
|
||||
std::vector<Vec4i> calculateLineSegments(const Mat& inputPicture);
|
||||
FrameData calculateLineSegments(const Mat& inputPicture, const cv::Rect& roi);
|
||||
};
|
@ -1,7 +1,8 @@
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
//#include <opencv2/core/utils/logger.hpp>
|
||||
#include <opencv2/opencv.hpp>
|
||||
|
||||
#include <iostream>
|
||||
#include <direct.h>
|
||||
|
||||
#include <input.h>
|
||||
#include <processing.h>
|
||||
@ -34,27 +35,97 @@ void sweep_em_all(int thresholdBinary, int videoHeight, int videoWidth, int gaus
|
||||
|
||||
void in_depth_processing_chain(int thresholdBinary, int videoHeight, int videoWidth, int gaussKernelSize, int thresholdCanny1, int thresholdCanny2, int apertureSizeCanny)
|
||||
{
|
||||
std::string outputFolder = "C:\\Users\\User\\Desktop\\temp";
|
||||
Input input(videoHeight, videoWidth);
|
||||
|
||||
Mat image = input.readFile("C:\\Users\\User\\Desktop\\Studium\\02_Master_MSY\\2. Semester Winter 22 23\\Projekt\\Line-Following-Robot\\Test_data");
|
||||
imwrite(outputFolder + "\\01_input.jpg", image);
|
||||
cvtColor(image, image, COLOR_BGR2GRAY);
|
||||
imwrite(outputFolder + "\\02_color_convert.jpg", image);
|
||||
GaussianBlur(image, image, Size(gaussKernelSize, gaussKernelSize), 0);
|
||||
imwrite(outputFolder + "\\03_gauss.jpg", image);
|
||||
threshold(image, image, thresholdBinary, 255, THRESH_BINARY);
|
||||
imwrite(outputFolder + "\\04_threshold.jpg", image);
|
||||
Canny(image, image, thresholdCanny1, thresholdCanny2, apertureSizeCanny);
|
||||
imwrite(outputFolder + "\\05_canny.jpg", image);
|
||||
cv::String outputFolder = "C:\\Users\\tim-z\\Desktop\\temp";
|
||||
cv::String inputFolder = "C:\\Users\\tim-z\\Desktop\\Studium\\02_Master MSY\\2. Semester Winter 2022 2023\\Projekt\\Repo\\Line-Following-Robot\\AutonomousMode\\Test_data";
|
||||
|
||||
std::vector<cv::String> filenames;
|
||||
cv::glob(inputFolder, filenames);
|
||||
|
||||
//filenames.begin(), filenames.end()
|
||||
int i = 0;
|
||||
for(std::vector<cv::String>::iterator it = filenames.begin(); it != filenames.end(); it++)
|
||||
{
|
||||
std::string current_output = outputFolder + "\\" + to_string(i);
|
||||
std::cout << current_output << std::endl;
|
||||
const char* current_output_char = current_output.c_str();
|
||||
_mkdir(current_output_char);
|
||||
|
||||
std::string inputFile = inputFolder + "\\image" + to_string(i+1) + ".jpeg";
|
||||
Mat original_image = input.readFile(inputFile);
|
||||
imwrite(current_output + "\\00_input.jpg", original_image);
|
||||
|
||||
Point roiOrigin(0, original_image.rows*(7.5/12.0));
|
||||
Rect roi = Rect(roiOrigin.x, roiOrigin.y, original_image.cols, original_image.rows/12);
|
||||
|
||||
Mat image = original_image(roi);
|
||||
|
||||
imwrite(current_output + "\\01_roi.jpg", image);
|
||||
cvtColor(image, image, COLOR_BGR2GRAY);
|
||||
imwrite(current_output + "\\02_color_convert.jpg", image);
|
||||
GaussianBlur(image, image, Size(gaussKernelSize, gaussKernelSize), 0);
|
||||
imwrite(current_output + "\\03_gauss.jpg", image);
|
||||
threshold(image, image, thresholdBinary, 255, THRESH_BINARY);
|
||||
imwrite(current_output + "\\04_threshold.jpg", image);
|
||||
|
||||
// Opening (reduces noise)
|
||||
Mat kernel(5,5, CV_8UC1,1);
|
||||
morphologyEx(image, image, 2, kernel);
|
||||
imwrite(current_output + "\\05_opening.jpg", image);
|
||||
|
||||
//Canny(image, image, thresholdCanny1, thresholdCanny2, apertureSizeCanny);
|
||||
//imwrite(outputFolder + "\\06_canny.jpg", image);
|
||||
|
||||
vector<vector<Point> > contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
vector<Rect> vectorOfRects;
|
||||
vector<Point> vectorOfLeftEdges;
|
||||
|
||||
findContours(image,contours, hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE);
|
||||
int amountOfValidRects = 0;
|
||||
for( int i = 0; i< contours.size(); i++ ) // iterate through each contour.
|
||||
{
|
||||
double a = contourArea( contours[i],false); // Find the area of contour
|
||||
if(a > 3500)
|
||||
{
|
||||
drawContours(original_image, contours, i, Scalar(0,255,255), 1, 8, hierarchy, 0, roiOrigin);
|
||||
|
||||
Rect currentBoundingRect = boundingRect(contours[i]);
|
||||
//Handle roi offset:
|
||||
currentBoundingRect.x += roiOrigin.x;
|
||||
currentBoundingRect.y += roiOrigin.y;
|
||||
vectorOfRects.push_back(currentBoundingRect);
|
||||
|
||||
rectangle(original_image, currentBoundingRect, Scalar(0,255,0));
|
||||
|
||||
// get mid-point of rect
|
||||
Point midRect = Point(currentBoundingRect.x+currentBoundingRect.width/2, currentBoundingRect.y+currentBoundingRect.height/2);
|
||||
|
||||
// Draw middle as small rect instead of circle because for whatever reasons drawing a circle doesnt work.
|
||||
Rect testRect(Point(midRect.x-2, midRect.y-2), Point(midRect.x+2, midRect.y+2));
|
||||
rectangle(original_image, testRect, Scalar(0,0,255));
|
||||
// get the left edge of rect
|
||||
// used as offset as raspicam is not
|
||||
// mounted on mid of regbot
|
||||
Point leftEdge(currentBoundingRect.x, currentBoundingRect.y+currentBoundingRect.height/2);
|
||||
vectorOfLeftEdges.push_back(leftEdge);
|
||||
|
||||
testRect = Rect(Point(leftEdge.x-2, leftEdge.y-2), Point(leftEdge.x+2, leftEdge.y+2));
|
||||
rectangle(original_image, testRect, Scalar(0,0,255));
|
||||
amountOfValidRects++;
|
||||
}
|
||||
}
|
||||
imwrite(current_output + "\\06_contours.jpg", original_image);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main(void)
|
||||
{
|
||||
//Disable opencv logging messages
|
||||
cv::utils::logging::setLogLevel(cv::utils::logging::LOG_LEVEL_WARNING);
|
||||
//cv::utils::logging::setLogLevel(cv::utils::logging::LOG_LEVEL_WARNING);
|
||||
|
||||
const int thresholdBinary = 140;
|
||||
const int videoHeight = 720;
|
||||
|
@ -60,4 +60,15 @@ class VectorOfLines{
|
||||
static double calcDistance(Point p0, Point p1);
|
||||
vector<Vec4i> findMiddleLine(vector<Vec4i> &lines);
|
||||
|
||||
};
|
||||
|
||||
class FrameData
|
||||
{
|
||||
public:
|
||||
std::vector<std::vector<cv::Point>> contours;
|
||||
std::vector<cv::Rect> boundingBoxes;
|
||||
std::vector<cv::Point> leftEdges;
|
||||
std::vector<cv::Point> middlePoints;
|
||||
|
||||
FrameData(): contours(), boundingBoxes(), leftEdges(), middlePoints() {}
|
||||
};
|
@ -7,17 +7,19 @@ int main(void)
|
||||
cv::utils::logging::setLogLevel(cv::utils::logging::LOG_LEVEL_WARNING);
|
||||
|
||||
const int thresholdBinary = 140;
|
||||
const int videoHeight = 240;
|
||||
const int videoWidth = 320;
|
||||
const int videoHeight = 720;
|
||||
const int videoWidth = 1280;
|
||||
const int gaussKernelSize = 21;
|
||||
const int thresholdCanny1 = 50;
|
||||
const int thresholdCanny2 = 100;
|
||||
const int apertureSizeCanny = 3;
|
||||
|
||||
LFR lfr(videoHeight, videoWidth, thresholdBinary, gaussKernelSize, thresholdCanny1, thresholdCanny2, apertureSizeCanny);
|
||||
lfr.saveOutputFlag = true;
|
||||
lfr.outputFileName = "/home/pi/Line-Following-Robot/AutonomousMode/tmp/test.jpg";
|
||||
lfr.startLoop();
|
||||
//To end the video stream, write any char in the console.
|
||||
char a;
|
||||
std::cin >> a;
|
||||
lfr.endLoop();
|
||||
}
|
||||
}
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
|
||||
LFR::LFR(int videoHeight, int videoWidth, int thresholdBinary, int gaussKernelSize, int thresholdCanny1, int thresholdCanny2, int apertureSizeCanny)
|
||||
: iAmLooping(false), input(videoHeight, videoWidth), processing(), controlModule(), interpreter(), intersectionHandler()
|
||||
: iAmLooping(false), input(videoHeight, videoWidth), processing(), controlModule(), interpreter(), intersectionHandler(), roi()
|
||||
{
|
||||
this->iAmLooping = false;
|
||||
this->thresholdBinary = thresholdBinary;
|
||||
@ -10,6 +10,14 @@ LFR::LFR(int videoHeight, int videoWidth, int thresholdBinary, int gaussKernelSi
|
||||
this->thresholdCanny1 = thresholdCanny1;
|
||||
this->thresholdCanny2 = thresholdCanny2;
|
||||
this->apertureSizeCanny = apertureSizeCanny;
|
||||
|
||||
this->videoFlag = false;
|
||||
this->saveOutputFlag = false;
|
||||
this->outputFileName = "";
|
||||
|
||||
cv::Point roiOrigin(0, videoHeight*(7.5/12.0));
|
||||
roi = Rect(roiOrigin.x, roiOrigin.y, videoWidth, videoHeight/12);
|
||||
|
||||
}
|
||||
|
||||
LFR::~LFR()
|
||||
@ -22,21 +30,16 @@ LFR::~LFR()
|
||||
|
||||
void LFR::loop()
|
||||
{
|
||||
namedWindow("Display window");
|
||||
if(this->videoFlag) {namedWindow("Display window");}
|
||||
while(iAmLooping)
|
||||
{
|
||||
Mat image = input.readWebcam();
|
||||
processing.processImage(image, this->thresholdBinary, this->gaussKernelSize, this->thresholdCanny1, thresholdCanny2, this->apertureSizeCanny);
|
||||
std::vector<Vec4i> lines = processing.calculateLineSegments(image);
|
||||
for( size_t i = 0; i < lines.size(); i++ )
|
||||
{
|
||||
line( image, Point(lines[i][0], lines[i][1]),
|
||||
Point( lines[i][2], lines[i][3]), (0,0,255), 1, 8 );
|
||||
}
|
||||
imshow("Display window", image);
|
||||
char c = (char)waitKey(1);
|
||||
Mat originalImage = input.readWebcam();
|
||||
Mat processedImage = originalImage;
|
||||
processing.processImage(processedImage, this->thresholdBinary, this->gaussKernelSize, this->thresholdCanny1, thresholdCanny2, this->apertureSizeCanny);
|
||||
FrameData data = processing.calculateLineSegments(processedImage, this->roi);
|
||||
this->provideOutput(processedImage);
|
||||
}
|
||||
destroyWindow("Display window");
|
||||
if(this->videoFlag) {destroyWindow("Display window");}
|
||||
input.freeWebcam();
|
||||
}
|
||||
|
||||
@ -51,4 +54,17 @@ void LFR::endLoop()
|
||||
iAmLooping = false;
|
||||
this->loopThread.join();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
void LFR::provideOutput(const Mat& image)
|
||||
{
|
||||
if(this->videoFlag)
|
||||
{
|
||||
imshow("Display window", image);
|
||||
char c = (char)waitKey(1);
|
||||
}
|
||||
if (this->saveOutputFlag && !(this->outputFileName.empty()))
|
||||
{
|
||||
imwrite(this->outputFileName, image);
|
||||
}
|
||||
}
|
||||
|
@ -30,6 +30,9 @@ class LFR
|
||||
int thresholdCanny1;
|
||||
int thresholdCanny2;
|
||||
int apertureSizeCanny;
|
||||
cv::Rect roi;
|
||||
|
||||
void provideOutput(const Mat& image);
|
||||
|
||||
public:
|
||||
|
||||
@ -39,5 +42,11 @@ public:
|
||||
|
||||
void startLoop();
|
||||
void endLoop();
|
||||
|
||||
|
||||
bool videoFlag;
|
||||
bool saveOutputFlag;
|
||||
|
||||
std::string outputFileName;
|
||||
|
||||
};
|
Loading…
x
Reference in New Issue
Block a user