Browse Source

Kantendetection und Liniendetection

pull/1/head
Baran Yasar 2 years ago
parent
commit
d7de99045b
5 changed files with 59 additions and 3 deletions
  1. 34
    0
      Processing/processing.cpp
  2. 2
    0
      Processing/processing.h
  3. 20
    0
      Utils/utils.h
  4. 2
    2
      autonomous_mode_main.cpp
  5. 1
    1
      lfr.cpp

+ 34
- 0
Processing/processing.cpp View File

@@ -8,15 +8,49 @@ Processing::~Processing()
{
}

static double angle( Point pt1, Point pt2, Point pt0 )
{
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

void Processing::processImage(Mat& inputPicture, int thresholdValue, int gaussKernelSize)
{
//Idea here is: Processing module consists of two methods:
// One (this) to do all kinds of stuff to the picture (grayscale conversion, threshold, gauss etc etc)
// And one (the other one) to segment the lines.
// No return value here as the input is passed by reference -> directly modified.
vector<Vec4i> lines;

cvtColor(inputPicture, inputPicture, COLOR_BGR2GRAY);
threshold(inputPicture, inputPicture, thresholdValue, 255, THRESH_BINARY);
GaussianBlur(inputPicture, inputPicture, Size(gaussKernelSize, gaussKernelSize), 0);
Canny(inputPicture, inputPicture, 50, 200, 3);

HoughLinesP(inputPicture, lines, 1, CV_PI/180, 150, 0, 0);
//Draw lines
for( size_t i = 0; i < lines.size(); i++ )
{
line( inputPicture, Point(lines[i][0], lines[i][1]),
Point( lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 );
}

imshow("Result", inputPicture);
waitKey(0);
destroyWindow("Result");

for( size_t i = 0; i < lines.size(); i++ )
{
line( inputPicture, Point(lines[i][0], lines[i][1]),
Point( lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 );
}
}

std::vector<LFRLine> Processing::calculateLineSegments(const Mat& inputPicture)

+ 2
- 0
Processing/processing.h View File

@@ -1,8 +1,10 @@
#include <iostream>
#include <opencv2/opencv.hpp>
#include <utils.h>
#include <vector>

using namespace cv;
using namespace std;

class Processing
{

+ 20
- 0
Utils/utils.h View File

@@ -1,5 +1,11 @@
#pragma once

#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;


class LFRPoint
{
private:
@@ -39,4 +45,18 @@ public:
LFRLine(LFRPoint start, LFRVector dir);
LFRLine(LFRPoint start, LFRPoint end);
~LFRLine();
};

class VectorOfLines{
private:
float theta;
float m;
float zeroPoint;
public:
VectorOfLines();
~VectorOfLines();
float calcTheta(cv::Point x, Point y);
float calcM(float theta);
float calcZeroPoint(cv::Point x, float m);

};

+ 2
- 2
autonomous_mode_main.cpp View File

@@ -6,10 +6,10 @@ int main(void)
//Disable opencv logging messages
cv::utils::logging::setLogLevel(cv::utils::logging::LOG_LEVEL_WARNING);

const int thresholdBinary = 110;
const int thresholdBinary = 140;
const int videoHeight = 240;
const int videoWidth = 320;
const int gaussKernelSize = 5;
const int gaussKernelSize = 11;

LFR lfr(videoHeight, videoWidth, thresholdBinary, gaussKernelSize);
lfr.startLoop();

+ 1
- 1
lfr.cpp View File

@@ -22,7 +22,7 @@ void LFR::loop()
namedWindow("Display window");
while(iAmLooping)
{
Mat image = input.readWebcam();
Mat image = input.readFile("C:\\Line-Following-Robot\\Test_data");
processing.processImage(image, this->thresholdBinary, this->gaussKernelSize);
std::vector<LFRLine> lines = processing.calculateLineSegments(image);
imshow("Display window", image);

Loading…
Cancel
Save