|
|
@@ -8,15 +8,49 @@ Processing::~Processing() |
|
|
|
{ |
|
|
|
} |
|
|
|
|
|
|
|
static double angle( Point pt1, Point pt2, Point pt0 ) |
|
|
|
{ |
|
|
|
double dx1 = pt1.x - pt0.x; |
|
|
|
double dy1 = pt1.y - pt0.y; |
|
|
|
double dx2 = pt2.x - pt0.x; |
|
|
|
double dy2 = pt2.y - pt0.y; |
|
|
|
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10); |
|
|
|
} |
|
|
|
|
|
|
|
void Processing::processImage(Mat& inputPicture, int thresholdValue, int gaussKernelSize) |
|
|
|
{ |
|
|
|
//Idea here is: Processing module consists of two methods: |
|
|
|
// One (this) to do all kinds of stuff to the picture (grayscale conversion, threshold, gauss etc etc) |
|
|
|
// And one (the other one) to segment the lines. |
|
|
|
// No return value here as the input is passed by reference -> directly modified. |
|
|
|
vector<Vec4i> lines; |
|
|
|
|
|
|
|
|
|
|
|
cvtColor(inputPicture, inputPicture, COLOR_BGR2GRAY); |
|
|
|
threshold(inputPicture, inputPicture, thresholdValue, 255, THRESH_BINARY); |
|
|
|
GaussianBlur(inputPicture, inputPicture, Size(gaussKernelSize, gaussKernelSize), 0); |
|
|
|
|
|
|
|
Canny(inputPicture, inputPicture, 50, 200, 3); |
|
|
|
|
|
|
|
HoughLinesP(inputPicture, lines, 1, CV_PI/180, 150, 0, 0); |
|
|
|
//Draw lines |
|
|
|
for( size_t i = 0; i < lines.size(); i++ ) |
|
|
|
{ |
|
|
|
line( inputPicture, Point(lines[i][0], lines[i][1]), |
|
|
|
Point( lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 ); |
|
|
|
} |
|
|
|
|
|
|
|
imshow("Result", inputPicture); |
|
|
|
waitKey(0); |
|
|
|
destroyWindow("Result"); |
|
|
|
|
|
|
|
for( size_t i = 0; i < lines.size(); i++ ) |
|
|
|
{ |
|
|
|
line( inputPicture, Point(lines[i][0], lines[i][1]), |
|
|
|
Point( lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 ); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
std::vector<LFRLine> Processing::calculateLineSegments(const Mat& inputPicture) |