#include "processing.h" Processing::Processing(/* args */) { } Processing::~Processing() { } void Processing::filterReflections(FrameData& frameData) { //Try to filter reflections from the frame data. std::vector indicesToDelete; for(int i = 0; i < frameData.contours.size(); i++) { // First approach: correct contours nearly fill their bounding box. // So delete all contours with an area smaller than 75% of their bounding box double contourArea = cv::contourArea(frameData.contours[i], false); double boundingBoxArea = double(frameData.boundingBoxes[i].width*frameData.boundingBoxes[i].height); double minRatio = 0.75; if(boundingBoxArea/contourArea < minRatio) { indicesToDelete.push_back(i); continue; } // Second approach: The contour should be nearly convex // So delete all contours with an area smaller than 95% of their convex hull. std::vector hull; cv::convexHull(frameData.contours[i], hull); double hullArea = cv::contourArea(hull, false); double minRatioHull = 0.95; if(contourArea/boundingBoxArea < minRatio) { indicesToDelete.push_back(i); continue; } } //reverse the vector with the indices so the order isn't messed up when deleting: std::reverse(indicesToDelete.begin(), indicesToDelete.end()); for(int index : indicesToDelete) { frameData.boundingBoxes.erase(frameData.boundingBoxes.begin() + index); frameData.contours.erase(frameData.contours.begin() + index); frameData.leftEdges.erase(frameData.leftEdges.begin() + index); frameData.middlePoints.erase(frameData.middlePoints.begin() + index); } return; } bool Processing::checkIntersection(const std::vector>& lines, const std::vector& outline) { /* TODO: * Was ich mir hier vorstelle: * Wir haben die konturen und die hough linien * Konturen haben schwäche mit Reflektionen, hough linien sind unvollständig. * Irgendwie sollten die beiden Datensätze gemerged werden, um das "gute" aus beiden zu vereinen. * Evtl in richtung "Schau den Bereich der Contour (+ Toleranz?) im hough bild an. Wenn keine Linie im Bereich ist, ist die Contour eine Reflektion" * * Aktuell nehmen wir die abkürzung, die segmente rauszuwerfen, sobald keine Linie im Bild ist. * Funktioniert für unsere Daten auch ziemlich gut */ if(lines.size() == 0) { return false; } return true; } void Processing::calcAngles(FrameData &data, int imageColums, int imageRows, bool turnLeft) { if(data.contours.size() > 0) { int index; // get the most left/right contour int leftmostEdge = imageColums; int rightmostEdge = 0; for (int i = 0; i < data.leftEdges.size(); i++) { int edge = data.leftEdges[i].x; if (edge <= leftmostEdge && turnLeft) { leftmostEdge = edge; index = i; } else if(edge >= rightmostEdge && !turnLeft) { rightmostEdge = edge; index = i; } } // Find the Top-Left and Bottom-Left Point of the Contour std::vector leftMostContour = data.contours[index]; /* Not going to dive into that part to fix it. Trying to use centroid instead. int xleftBottom = imageColums; int xleftTop = imageColums; int yBottom = data.boundingBoxes[index].y; int yTop = data.boundingBoxes[index].height; for (int i = 0; i < leftMostContour.size(); i++) { if(leftMostContour[i].y == 0 && leftMostContour[i].x < xleftBottom) { xleftBottom = leftMostContour[i].x; } else if(leftMostContour[i].y > yTop -4 && leftMostContour[i].x < xleftTop) { xleftTop = leftMostContour[i].x; } } // calculate angle int deltaX = abs(xleftBottom - xleftTop); int deltaY = yTop; angle = Calcs::calcAngle(deltaX, deltaY); */ //Get the contours center using moments: cv::Moments moments=cv::moments(leftMostContour); LFRPoint contourCenter(moments.m10/moments.m00, moments.m01/moments.m00); LFRPoint imageCenter(double(imageColums)/2.0, double(imageRows)/2.0); LFRPoint focusPoint(imageCenter.x, imageCenter.y+1000.0); LFRVector a(imageCenter-focusPoint); LFRVector b(contourCenter-focusPoint); double angle = a.angle(b); if (b.x < 0.0) { angle *= -1.0; } //Write to Data data.angle = angle; data.index = index; } } void Processing::processImage(Mat& inputPicture, int thresholdBinary, int gaussKernelSize) { //Idea here is: Processing module consists of two methods: // One (this) to do all kinds of stuff to the picture (grayscale conversion, threshold, gauss etc etc) // And one (the other one) to segment the lines. // No return value here as the input is passed by reference -> directly modified. cvtColor(inputPicture, inputPicture, COLOR_BGR2GRAY); GaussianBlur(inputPicture, inputPicture, Size(gaussKernelSize, gaussKernelSize), 0); threshold(inputPicture, inputPicture, thresholdBinary, 255, THRESH_BINARY); //Perform an opening Mat kernel(5,5, CV_8UC1,1); morphologyEx(inputPicture, inputPicture, 2, kernel); } FrameData Processing::calculateLineSegments(Mat& inputPicture, const cv::Rect& roi) { FrameData data; Mat inputPictureRoi = inputPicture(roi); cv::findContours(inputPictureRoi, data.contours, RETR_LIST, CHAIN_APPROX_SIMPLE); vector lines; std::vector> houghLines; Canny(inputPicture, inputPicture, 50, 100, 3); HoughLinesP(inputPicture, lines, 1, CV_PI/180, 100, 30, 150); //Draw lines inputPicture = Mat::zeros(inputPicture.size().height, inputPicture.size().width, CV_8UC1); for( size_t i = 0; i < lines.size(); i++ ) { line( inputPicture, Point(lines[i][0], lines[i][1]), Point(lines[i][2], lines[i][3]), Scalar(255,255,255), 3, 8 ); std::vector line; line.push_back(Point(lines[i][0], lines[i][1])); line.push_back(Point(lines[i][2], lines[i][3])); houghLines.push_back(line); } //Delete the areas that are too small auto iterator = data.contours.begin(); while(iterator != data.contours.end()) { if (contourArea(*iterator) < 7000) { iterator = data.contours.erase(iterator); } else if (!checkIntersection(houghLines, *iterator)) { iterator = data.contours.erase(iterator); } else { //Check for intersection with lines: Rect boundingBox = boundingRect(*iterator); boundingBox.x += roi.x; boundingBox.y += roi.y; data.boundingBoxes.push_back(boundingBox); data.middlePoints.push_back(Point(boundingBox.x+boundingBox.width/2, boundingBox.y+boundingBox.height/2)); data.leftEdges.push_back(Point(boundingBox.x, boundingBox.y+boundingBox.height/2)); ++iterator; } } return data; }