Loesung Praktikum
This commit is contained in:
parent
0d1b73e3e0
commit
e70d170be8
@ -30,7 +30,35 @@ architecture rtl of add is
|
||||
signal next_task_state : work.task.State;
|
||||
signal index : integer range 0 to work.task.STREAM_LEN;
|
||||
|
||||
-- Zustände für die Zustandsmaschine zur Berechnung
|
||||
type SigState is (
|
||||
SIG_IDLE,
|
||||
SIG_READ,
|
||||
SIG_ADD,
|
||||
SIG_WRITE
|
||||
);
|
||||
|
||||
signal current_sig_state : SigState;
|
||||
signal next_sig_state : SigState;
|
||||
|
||||
signal signal_add_start : std_logic;
|
||||
signal signal_add_done : std_logic;
|
||||
|
||||
|
||||
begin
|
||||
|
||||
u_float_add : entity work.float_add
|
||||
port map(
|
||||
clk => clk,
|
||||
reset => reset,
|
||||
start => signal_add_start,
|
||||
done => signal_add_done,
|
||||
A => signal_a_readdata,
|
||||
B => signal_b_readdata,
|
||||
sum => signal_writedata
|
||||
);
|
||||
|
||||
|
||||
task_state_transitions : process ( current_task_state, task_start, index ) is
|
||||
begin
|
||||
next_task_state <= current_task_state;
|
||||
@ -40,7 +68,7 @@ begin
|
||||
next_task_state <= work.task.TASK_RUNNING;
|
||||
end if;
|
||||
when work.task.TASK_RUNNING =>
|
||||
if ( index = work.task.STREAM_LEN - 1 ) then
|
||||
if ( index = work.task.STREAM_LEN) then
|
||||
next_task_state <= work.task.TASK_DONE;
|
||||
end if;
|
||||
when work.task.TASK_DONE =>
|
||||
@ -50,24 +78,75 @@ begin
|
||||
end case;
|
||||
end process task_state_transitions;
|
||||
|
||||
sync : process ( clk, reset ) is
|
||||
sig_state_transitions : process (all) is
|
||||
begin
|
||||
next_sig_state <= current_sig_state;
|
||||
case current_sig_state is
|
||||
when SIG_IDLE =>
|
||||
if ( current_task_state = work.task.TASK_RUNNING ) then
|
||||
next_sig_state <= SIG_READ;
|
||||
end if;
|
||||
when SIG_READ =>
|
||||
next_sig_state <= SIG_ADD;
|
||||
when SIG_ADD =>
|
||||
if ( signal_add_done = '1') then
|
||||
next_sig_state <= SIG_WRITE;
|
||||
end if;
|
||||
when SIG_WRITE =>
|
||||
next_sig_state <= SIG_IDLE;
|
||||
end case;
|
||||
end process sig_state_transitions;
|
||||
|
||||
task_sync : process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
current_task_state <= work.task.TASK_IDLE;
|
||||
index <= 0;
|
||||
--index <= 0;
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
current_task_state <= next_task_state;
|
||||
case next_task_state is
|
||||
when work.task.TASK_IDLE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
null;
|
||||
-- signal_write <= '0';
|
||||
when work.task.TASK_RUNNING =>
|
||||
index <= index + 1;
|
||||
signal_write <= '1';
|
||||
signal_writedata <= ( others => '0' );
|
||||
null;
|
||||
-- signal_write <= '1';
|
||||
-- signal_writedata <= ( others => '0' );
|
||||
when work.task.TASK_DONE =>
|
||||
null;
|
||||
-- signal_write <= '0';
|
||||
end case;
|
||||
end if;
|
||||
end process task_sync;
|
||||
|
||||
sync : process (all) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
current_sig_state <= SIG_IDLE;
|
||||
index <= 0;
|
||||
signal_a_read <= '0';
|
||||
signal_b_read <= '0';
|
||||
signal_add_start <= '0';
|
||||
signal_write <= '0';
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
current_sig_state <= next_sig_state;
|
||||
signal_write <= '0';
|
||||
signal_a_read <= '0';
|
||||
signal_b_read <= '0';
|
||||
case next_sig_state is
|
||||
when SIG_IDLE =>
|
||||
if (index = 0) then
|
||||
current_sig_state <= SIG_ADD;
|
||||
end if;
|
||||
when SIG_READ =>
|
||||
signal_a_read <= '1';
|
||||
signal_b_read <= '1';
|
||||
when SIG_ADD =>
|
||||
signal_add_start <= '1';
|
||||
when SIG_WRITE =>
|
||||
signal_add_start <= '0';
|
||||
signal_write <= '1';
|
||||
index <= index + 1;
|
||||
end case;
|
||||
end if;
|
||||
end process sync;
|
||||
|
@ -19,6 +19,7 @@ library work;
|
||||
use work.task.all;
|
||||
use work.float.all;
|
||||
|
||||
|
||||
entity fft is
|
||||
generic (
|
||||
|
||||
@ -44,13 +45,102 @@ entity fft is
|
||||
);
|
||||
end entity fft;
|
||||
|
||||
|
||||
architecture rtl of fft is
|
||||
|
||||
signal current_task_state : work.task.State;
|
||||
signal next_task_state : work.task.State;
|
||||
signal index : integer range 0 to work.task.STREAM_LEN;
|
||||
|
||||
component fftmain is
|
||||
-- generic( width : integer := 32
|
||||
--);
|
||||
port(
|
||||
clock: in std_logic;
|
||||
reset: in std_logic;
|
||||
di_en: in std_logic;
|
||||
di_re: in std_logic_vector(input_data_width-1 downto 0);
|
||||
di_im: in std_logic_vector(input_data_width-1 downto 0);
|
||||
do_en: out std_logic;
|
||||
do_re: out std_logic_vector(output_data_width-1 downto 0);
|
||||
do_im: out std_logic_vector(output_data_width-1 downto 0)
|
||||
);
|
||||
end component;
|
||||
|
||||
-- Zustände für die Zustandsmaschine zur Berechnung
|
||||
type SigState is (
|
||||
SIG_IDLE,
|
||||
SIG_READ,
|
||||
SIG_FFTMAIN,
|
||||
SIG_FFTMAG,
|
||||
SIG_WRITE
|
||||
);
|
||||
signal current_sig_state : SigState;
|
||||
signal next_sig_state : SigState;
|
||||
|
||||
signal fftmain_start : std_logic;
|
||||
signal fftmain_done : std_logic;
|
||||
signal fftmag_start : std_logic;
|
||||
signal fftmag_done : std_logic;
|
||||
signal fftmain_out_re : std_logic_vector( 31 downto 0 );
|
||||
signal fftmain_out_im : std_logic_vector( 31 downto 0 );
|
||||
|
||||
signal exp : std_logic_vector( 7 downto 0);
|
||||
signal scaled_exp : std_logic_vector( 7 downto 0);
|
||||
signal scaled_readdata : std_logic_vector( 31 downto 0);
|
||||
signal exp_int : integer;
|
||||
signal scaled_data_fixp : std_logic_vector(31 downto 0);
|
||||
|
||||
signal exp2 : std_logic_vector( 7 downto 0);
|
||||
signal scaled_exp2 : std_logic_vector( 7 downto 0);
|
||||
signal exp_int2 : integer;
|
||||
|
||||
signal magnitude_output : std_logic_vector( 31 downto 0 );
|
||||
signal writedata_float : std_logic_vector( 31 downto 0 );
|
||||
|
||||
type std_logic_vector_array is array (0 to 1023) of std_logic_vector(31 downto 0);
|
||||
signal my_array : std_logic_vector_array;
|
||||
|
||||
|
||||
begin
|
||||
|
||||
exp <= signal_readdata( 30 downto 23 );
|
||||
exp_int <= to_integer(unsigned(exp));
|
||||
scaled_exp <= std_logic_vector(to_unsigned(exp_int - 4, 8));
|
||||
scaled_readdata <= signal_readdata( 31 ) & scaled_exp & signal_readdata( 22 downto 0 );
|
||||
scaled_data_fixp <= to_fixed(scaled_readdata);
|
||||
|
||||
writedata_float <= to_float(magnitude_output);
|
||||
exp2 <= writedata_float( 30 downto 23 );
|
||||
exp_int2 <= to_integer(unsigned(exp2));
|
||||
scaled_exp2 <= std_logic_vector(to_unsigned(exp_int2 + 5, 8));
|
||||
my_array(1023 - index) <= writedata_float( 31 ) & scaled_exp2 & writedata_float( 22 downto 0 );
|
||||
signal_writedata <= my_array(index);
|
||||
|
||||
u_fft : fftmain
|
||||
port map (
|
||||
clock => clk,
|
||||
reset => reset,
|
||||
di_en => fftmain_start,
|
||||
di_re => scaled_data_fixp,
|
||||
di_im => x"00000000",
|
||||
do_en => fftmain_done,
|
||||
do_re => fftmain_out_re,
|
||||
do_im => fftmain_out_im
|
||||
);
|
||||
|
||||
|
||||
u_fft_mag_calc : entity work.fft_magnitude_calc
|
||||
port map (
|
||||
clk => clk,
|
||||
reset => reset,
|
||||
input_valid => fftmag_start,
|
||||
input_re => fftmain_out_re,
|
||||
input_im => fftmain_out_im,
|
||||
output_valid => fftmag_done,
|
||||
output_magnitude => magnitude_output
|
||||
);
|
||||
|
||||
task_state_transitions : process ( current_task_state, task_start, index ) is
|
||||
begin
|
||||
next_task_state <= current_task_state;
|
||||
@ -70,24 +160,69 @@ begin
|
||||
end case;
|
||||
end process task_state_transitions;
|
||||
|
||||
sig_state_transitions : process (all) is
|
||||
begin
|
||||
next_sig_state <= current_sig_state;
|
||||
case current_sig_state is
|
||||
when SIG_IDLE =>
|
||||
if ( current_task_state = work.task.TASK_RUNNING ) then
|
||||
next_sig_state <= SIG_READ;
|
||||
end if;
|
||||
when SIG_READ =>
|
||||
next_sig_state <= SIG_FFTMAIN;
|
||||
when SIG_FFTMAIN =>
|
||||
if ( fftmain_done = '1') then
|
||||
next_sig_state <= SIG_FFTMAG;
|
||||
end if;
|
||||
when SIG_FFTMAG =>
|
||||
if ( fftmain_done = '0') then
|
||||
next_sig_state <= SIG_WRITE;
|
||||
end if;
|
||||
when SIG_WRITE =>
|
||||
null;
|
||||
end case;
|
||||
end process sig_state_transitions;
|
||||
|
||||
sync : process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
current_task_state <= work.task.TASK_IDLE;
|
||||
current_sig_state <= SIG_IDLE;
|
||||
index <= 0;
|
||||
signal_read <= '0';
|
||||
fftmain_start <= '0';
|
||||
fftmag_start <= '0';
|
||||
signal_write <= '0';
|
||||
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
current_task_state <= next_task_state;
|
||||
case next_task_state is
|
||||
when work.task.TASK_IDLE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
null;
|
||||
when work.task.TASK_RUNNING =>
|
||||
index <= index + 1;
|
||||
signal_write <= '1';
|
||||
signal_writedata <= ( others => '0' );
|
||||
null;
|
||||
when work.task.TASK_DONE =>
|
||||
index <= 0;
|
||||
null;
|
||||
end case;
|
||||
|
||||
current_sig_state <= next_sig_state;
|
||||
case next_sig_state is
|
||||
when SIG_IDLE =>
|
||||
signal_write <= '0';
|
||||
when SIG_READ =>
|
||||
signal_read <= '1';
|
||||
when SIG_FFTMAIN =>
|
||||
fftmain_start <= '1';
|
||||
when SIG_FFTMAG =>
|
||||
signal_read <= '0';
|
||||
fftmain_start <= '0';
|
||||
fftmag_start <= '1';
|
||||
signal_write <= '0';
|
||||
index <= index + 1;
|
||||
when SIG_WRITE =>
|
||||
fftmag_start <= '0';
|
||||
signal_write <= '1';
|
||||
|
||||
end case;
|
||||
end if;
|
||||
end process sync;
|
||||
|
@ -4,7 +4,23 @@
|
||||
|
||||
int task_add_run( void * task ) {
|
||||
|
||||
// TODO
|
||||
add_config * config = (add_config *) task;
|
||||
|
||||
float_word f;
|
||||
|
||||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; i++)
|
||||
{
|
||||
float a;
|
||||
data_channel_read(config->sources[0], (uint32_t *) & a);
|
||||
|
||||
float b;
|
||||
data_channel_read(config->sources[1], (uint32_t *) & b);
|
||||
|
||||
float_word c;
|
||||
c.value = a + b;
|
||||
f.value = c.value;
|
||||
data_channel_write(config->sink, c.word);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -2,11 +2,96 @@
|
||||
#include "system/data_channel.h"
|
||||
#include "system/Complex.h"
|
||||
#include "system/float_word.h"
|
||||
#include <math.h>
|
||||
#include <complex.h>
|
||||
#include <stdio.h>
|
||||
|
||||
void fft_radix4(complex float *x) {
|
||||
int n = DATA_CHANNEL_DEPTH;
|
||||
int stages = log(n) / log(4); // Anzahl der FFT-Stufen
|
||||
|
||||
// Bit-Reversal-Rearrangement (Umordnung der Daten für FFT)
|
||||
for (int i = 0; i < n; i++) {
|
||||
int rev = 0, num = i;
|
||||
for (int bit = 0; bit < stages; bit++) {
|
||||
rev = rev * 4 + (num % 4);
|
||||
//printf("i: %d, rev: %d\n", i, rev);
|
||||
num /= 4;
|
||||
}
|
||||
if (i < rev) {
|
||||
complex float temp = x[i];
|
||||
x[i] = x[rev];
|
||||
x[rev] = temp;
|
||||
}
|
||||
}
|
||||
|
||||
// Radix-4 Butterfly-Berechnung
|
||||
for (int s = 1; s <= stages; s++) {
|
||||
int m = pow(4, s); // Gruppengröße (4^s)
|
||||
int quarter_m = m / 4; // Viertel der Gruppengröße
|
||||
float theta = -2.0f * M_PI / m; // Grundwinkel der Wurzeln der Einheit
|
||||
//printf("Stage: %d, m: %d, theta: %f\n", s, m, theta);
|
||||
|
||||
for (int k = 0; k < n; k += m) { // Iteration über Gruppen
|
||||
for (int j = 0; j < quarter_m; j++) { // Innerhalb der Gruppe
|
||||
// Wurzeln der Einheit
|
||||
complex float w0 = 1.0f; // Wurzel für j = 0
|
||||
complex float w1 = cexpf(I * theta * j); // Wurzel für j = 1
|
||||
complex float w2 = cexpf(I * theta * 2 * j); // Wurzel für j = 2
|
||||
complex float w3 = cexpf(I * theta * 3 * j); // Wurzel für j = 3
|
||||
|
||||
// Lade die Werte aus der Gruppe
|
||||
complex float t0 = x[k + j];
|
||||
complex float t1 = x[k + j + quarter_m] * w1;
|
||||
complex float t2 = x[k + j + 2 * quarter_m] * w2;
|
||||
complex float t3 = x[k + j + 3 * quarter_m] * w3;
|
||||
//printf("w1: %f + %fi, w2: %f + %fi, w3: %f + %fi\n", crealf(w1), cimagf(w1), crealf(w2), cimagf(w2), crealf(w3), cimagf(w3));
|
||||
|
||||
//printf("Before: t0: %f + %fi, t1: %f + %fi, t2: %f + %fi, t3: %f + %fi\n", crealf(t0), cimagf(t0), crealf(t1), cimagf(t1), crealf(t2), cimagf(t2), crealf(t3), cimagf(t3));
|
||||
// Butterfly-Operationen
|
||||
x[k + j] = t0 + t1 + t2 + t3;
|
||||
x[k + j + quarter_m] = t0 - t1 + I * (t3 - t2);
|
||||
x[k + j + 2 * quarter_m] = t0 - t2 + t1 - t3;
|
||||
x[k + j + 3 * quarter_m] = t0 - t1 - I * (t3 - t2);
|
||||
//printf("After: x[%d]: %f + %fi, x[%d]: %f + %fi\n", k + j, crealf(x[k + j]), cimagf(x[k + j]), k + j + quarter_m, crealf(x[k + j + quarter_m]), cimagf(x[k + j + quarter_m]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
int task_fft_run(void *task) {
|
||||
|
||||
// TODO
|
||||
fft_config *config = (fft_config *)task;
|
||||
complex float x[DATA_CHANNEL_DEPTH];
|
||||
float c[DATA_CHANNEL_DEPTH];
|
||||
|
||||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
|
||||
float a;
|
||||
data_channel_read(config->base.sources[0], (uint32_t *) &a);
|
||||
x[i] = a;
|
||||
//printf("Input x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i]));
|
||||
}
|
||||
|
||||
fft_radix4(x);
|
||||
|
||||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
|
||||
//printf("Output complex x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i]));
|
||||
c[i] = sqrt(pow(crealf(x[i]), 2) + pow(cimagf(x[i]), 2)); // Betrag
|
||||
if (i == 0)
|
||||
c[i] = c[i] * 1/DATA_CHANNEL_DEPTH; // Sklaierung
|
||||
else
|
||||
c[i] = c[i] * 2/DATA_CHANNEL_DEPTH; // Sklaierung
|
||||
printf("Output Magnitude skaliert c[%d] = %f\n", i, c [i]);
|
||||
|
||||
float_word output;
|
||||
output.value = c[i];
|
||||
|
||||
data_channel_write(config->base.sink, output.word);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user