grimmad102979 0baa59d050 fertig
2025-12-16 09:58:21 +01:00

116 lines
3.9 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.task.all;
entity rand is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
seed : in work.reg32.word;
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity rand;
architecture rtl of rand is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
-- Register für den LFSR Zustand
signal lfsr_reg : std_logic_vector(31 downto 0);
begin
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
sync : process ( clk, reset ) is
variable v_feedback : std_logic;
variable v_lfsr_next : std_logic_vector(31 downto 0);
variable v_send_cycle : boolean := true; -- toggle um signal_write nur einen Takt auszugeben
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
lfsr_reg <= (others => '0');
signal_write <= '0';
signal_writedata <= (others => '0');
v_send_cycle := true;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
lfsr_reg <= seed;
v_send_cycle := true; -- Reset toggle für nächsten Start
when work.task.TASK_RUNNING =>
if v_send_cycle = true then
index <= index + 1;
-- 1. LFSR Feedback berechnen (Polynom x^31 + x^21 + x^1 + 1)
v_feedback := lfsr_reg(31) xor lfsr_reg(21) xor lfsr_reg(1) xor lfsr_reg(0);
-- 2. Schieben und neues Bit einfügen
v_lfsr_next := lfsr_reg(30 downto 0) & v_feedback;
-- Register aktualisieren für den nächsten Takt
lfsr_reg <= v_lfsr_next;
-- 3. Daten schreiben und Bit-Manipulation
signal_write <= '1';
-- Wir nutzen hier v_lfsr_next, damit der geschriebene Wert
-- dem aktuellen Berechnungsschritt entspricht.
if v_lfsr_next(30) = '1' then
-- Fall A: Bit 30 ist 1. Bits 29-24 löschen
-- Maske: AND mit 1100 0000 ... (0xC0...)
signal_writedata <= v_lfsr_next and x"C0FFFFFF";
else
-- Fall B: Bit 30 ist 0. Bits 29-25 setzen
-- Maske: OR mit 0011 1110 ... (0x3E...)
signal_writedata <= v_lfsr_next or x"3E000000";
end if;
v_send_cycle := false;
else
signal_write <= '0';
v_send_cycle := true;
end if;
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case;
end if;
end process sync;
task_state <= current_task_state;
end architecture rtl;