163 lines
4.5 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.task.all;
entity add is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
signal_a_read : out std_logic;
signal_a_readdata : in std_logic_vector( 31 downto 0 );
signal_b_read : out std_logic;
signal_b_readdata : in std_logic_vector( 31 downto 0 );
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity add;
-- tbd
-- if _read is 1 _readdata is read
-- if _write is 1 _writedata is written
-- float_add instanziieren
-- state machine that sets taskState and write signals
architecture rtl of add is
component float_add
port (
clk : in std_logic;
reset : in std_logic;
start : in std_logic;
A : in std_logic_vector( 31 downto 0 );
B : in std_logic_vector( 31 downto 0 );
done : out std_logic;
sum : out std_logic_vector( 31 downto 0 )
);
end component float_add;
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
signal float_add_start : std_logic;
signal float_add_A : std_logic_vector( 31 downto 0 );
signal float_add_B : std_logic_vector( 31 downto 0 );
signal float_add_done : std_logic;
signal float_add_sum : std_logic_vector( 31 downto 0 );
signal add_state : integer range 0 to 3;
signal flag_index : bit;
begin
float_adder : float_add
port map (
clk => clk,
reset => reset,
start => float_add_start,
A => float_add_A, -- feed readdata into float adder
B => float_add_B, -- feed readdata into float adder
done => float_add_done, -- write signal when float addition is finished
sum => float_add_sum -- feed output of float adder into writedata
);
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
-- signal_write <= '0';
when work.task.TASK_RUNNING => -- signal_writedata <= result???
if ( flag_index = '1' ) then
index <= index + 1;
end if;
-- signal_write <= '1';
-- signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
index <= 0;
-- signal_write <= '0';
end case;
end if;
end process sync;
add : process (clk, reset) is
begin
if ( reset = '1' ) then
signal_a_read <= '0';
signal_b_read <= '0';
signal_write <= '0';
signal_writedata <= ( others => '0');
float_add_start <= '0';
float_add_A <= ( others => '0');
float_add_B <= ( others => '0');
elsif ( rising_edge( clk ) ) then
case add_state is
when 0 =>
if ( current_task_state = work.task.TASK_RUNNING ) then
add_state <= 1;
end if;
when 1 =>
signal_a_read <= '1';
signal_b_read <= '1';
float_add_start <= '1';
float_add_A <= signal_a_readdata;
float_add_B <= signal_b_readdata;
if ( float_add_done = '1' ) then
add_state <= 2;
end if;
when 2 =>
signal_write <= '1';
signal_writedata <= float_add_sum;
float_add_start <= '0';
signal_a_read <= '0';
signal_b_read <= '0';
flag_index <= '1';
add_state <= 3;
when 3 =>
signal_write <= '0';
flag_index <= '0';
add_state <= 0;
end case;
end if;
end process add;
task_state <= current_task_state;
end architecture rtl;