2025-12-23 10:56:59 +01:00

195 lines
5.2 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.task.all;
entity add is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
signal_a_read : out std_logic;
signal_a_readdata : in std_logic_vector(31 downto 0);
signal_b_read : out std_logic;
signal_b_readdata : in std_logic_vector(31 downto 0);
signal_write : out std_logic;
signal_writedata : out std_logic_vector(31 downto 0)
);
end entity add;
architecture rtl of add is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
type AddState is (
ADD_IDLE,
ADD_READ_FIFO,
ADD_LATCH_INPUTS,
ADD_START_CALC,
ADD_WAIT_DONE,
ADD_STORE_RESULT
);
signal current_add_state : AddState;
signal next_add_state : AddState;
signal start_proc : std_logic;
signal done : std_logic;
signal A : std_logic_vector(31 downto 0);
signal B : std_logic_vector(31 downto 0);
signal sum : std_logic_vector(31 downto 0);
begin
u_float_add : entity work.float_add
port map (
clk => clk,
reset => reset,
start => start_proc,
done => done,
A => A,
B => B,
sum => sum
);
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
add_state_transitions : process ( current_add_state, current_task_state, done ) is
begin
next_add_state <= current_add_state;
if (current_task_state /= work.task.TASK_RUNNING) then
next_add_state <= ADD_IDLE;
else
case current_add_state is
when ADD_IDLE =>
next_add_state <= ADD_READ_FIFO;
when ADD_READ_FIFO =>
next_add_state <= ADD_LATCH_INPUTS;
when ADD_LATCH_INPUTS =>
next_add_state <= ADD_START_CALC;
when ADD_START_CALC =>
next_add_state <= ADD_WAIT_DONE;
when ADD_WAIT_DONE =>
if done = '1' then
next_add_state <= ADD_STORE_RESULT;
end if;
when ADD_STORE_RESULT =>
next_add_state <= ADD_READ_FIFO;
end case;
end if;
end process;
sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
current_add_state <= ADD_IDLE;
signal_a_read <= '0';
signal_b_read <= '0';
signal_write <= '0';
signal_writedata <= (others => '0');
start_proc <= '0';
A <= (others => '0');
B <= (others => '0');
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
current_add_state <= next_add_state;
signal_a_read <= '0';
signal_b_read <= '0';
signal_write <= '0';
start_proc <= '0';
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
when work.task.TASK_RUNNING =>
if current_add_state = ADD_STORE_RESULT then
index <= index + 1;
end if;
when work.task.TASK_DONE =>
index <= 0;
end case;
case next_add_state is
when ADD_IDLE =>
null;
when ADD_READ_FIFO =>
signal_a_read <= '1';
signal_b_read <= '1';
when ADD_LATCH_INPUTS =>
A <= signal_a_readdata;
B <= signal_b_readdata;
when ADD_START_CALC =>
start_proc <= '1';
when ADD_WAIT_DONE =>
start_proc <= '1';
null;
when ADD_STORE_RESULT =>
signal_write <= '1';
signal_writedata <= sum;
end case;
end if;
end process sync;
task_state <= current_task_state;
end architecture rtl;