2025-12-23 10:56:59 +01:00

121 lines
4.4 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.task.all;
entity crc is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
signal_read : out std_logic;
signal_readdata : in std_logic_vector(31 downto 0);
signal_write : out std_logic;
signal_writedata: out std_logic_vector(31 downto 0)
);
end entity crc;
architecture rtl of crc is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN := 0;
constant CRC_INIT : std_logic_vector(31 downto 0) := X"FFFFFFFF";
constant CRC_POLY : std_logic_vector(31 downto 0) := X"EDB88320";
signal crc : std_logic_vector(31 downto 0) := CRC_INIT;
signal data_reg : std_logic_vector(31 downto 0);
signal data_valid : std_logic := '0';
begin
task_state <= current_task_state;
-- TASK STATE MACHINE (VORLAGE - nicht ändern!)
task_state_transitions: process(current_task_state, task_start, index)
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if task_start = '1' then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
-- WICHTIG: Schreiben nach 1024 Werten (index 0-1023)
if index = 1023 then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if task_start = '1' then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process;
-- Data Channel Control
signal_read <= '1' when current_task_state = work.task.TASK_RUNNING
and data_valid = '0'
and index < 1024
else '0';
signal_write <= '1' when current_task_state = work.task.TASK_DONE else '0';
signal_writedata <= crc xor X"FFFFFFFF"; -- Final XOR
-- Haupt-Sync Process (identisch zur SW-Version)
sync: process(clk, reset)
variable temp_crc : std_logic_vector(31 downto 0);
begin
if reset = '1' then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
crc <= CRC_INIT;
data_reg <= (others => '0');
data_valid <= '0';
elsif rising_edge(clk) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
crc <= CRC_INIT;
data_valid <= '0';
when work.task.TASK_RUNNING =>
-- 1. DATA LESEN (Timing: signal_read='1' -> NEXT CLK data_valid)
if signal_read = '1' then
data_reg <= signal_readdata;
data_valid <= '1';
end if;
-- 2. CRC UPDATE (zlib: XOR dann 32x bitweise LSB-first)
if data_valid = '1' then
temp_crc := crc xor data_reg;
crc <= temp_crc;
-- 32 Bit LSB-first Verarbeitung in EINEM Takt (wie SW)
for i in 0 to 31 loop
if temp_crc(0) = '1' then
temp_crc := std_logic_vector(shift_right(unsigned(temp_crc), 1)) xor CRC_POLY;
else
temp_crc := std_logic_vector(shift_right(unsigned(temp_crc), 1));
end if;
end loop;
crc <= temp_crc;
data_valid <= '0';
index <= index + 1;
end if;
when work.task.TASK_DONE =>
index <= 0;
data_valid <= '0';
end case;
end if;
end process;
end architecture rtl;