leitnerti80244 73c4f491fd commit1
2024-01-09 08:49:42 +01:00

165 lines
4.0 KiB
VHDL

------------------------------------------------------------------------
-- fft
--
-- calculation of FFT magnitude
--
-- Inputs:
-- 32-Bit Floating Point number in range +-16 expected (loaded from FIFO)
--
-- Outputs
-- 32-Bit Floating Point number in range +-16 calculated (stored in FIFO)
--
-----------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.task.all;
use work.float.all;
architecture rtl of fft is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
--own signals:
--signal input_re : float(31 downto 0);
--use xxx.lib?; --componenteninstanziierung FFT IP-Core r22sdf
--component foo is
--generic (...)
--port(...);
--end component;
component fftmain is
generic (
-- input data width of real/img part
input_data_width : integer := 32;
-- output data width of real/img part
output_data_width : integer := 32
);
port (
clk : in std_logic;
reset : in std_logic;
di_en : in std_logic;
di_re : in std_logic_vector(input_data_width-1 downto 0);
di_im : in std_logic_vector(input_data_width-1 downto 0);
do_en : in std_logic;
do_re : in std_logic_vector(input_data_width-1 downto 0);
do_im : in std_logic_vector(input_data_width-1 downto 0)
--task_start : in std_logic;
--task_state : out work.task.State;
--signal_read : out std_logic;
--signal_readdata : in std_logic_vector( 31 downto 0 );
--signal_write : out std_logic;
--signal_writedata : out std_logic_vector( 31 downto 0 )
);
end component fftmain;
---State machine ----------------------------------
TYPE State_type IS (A, B, C, D); -- Define the states
SIGNAL State : State_Type; -- Create a signal that uses
-- the different states
begin
u_fft : fftmain
port map (
clock => clk,
reset => fft_reset,
di_en => fft_input_data_enable,
di_re => diata_in_re,
di_im => data_in_im,
do_en => fft_output_valid,
do_re => data_out_re,
do_im => data_out_im
);
u_fft_mag_calc : entity work.fft_magnitude_calc
port map (
clk => clk,
reset => reset,
input_valid => fft_output_valid,
input_re => data_out_re,
input_im => data_out_im,
output_valid => fft_mag_calc_valid,
output_magnitude => fft_mag_calc_result
);
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case;
end if;
end process sync;
task_state <= current_task_state;
end architecture rtl;