Iteration durch das Bildarray
Anpassungen müssen noch gemacht werden!
This commit is contained in:
parent
24ab0a1f85
commit
4c80771315
@ -12,26 +12,35 @@ rows = image.shape[0] # Auslesen der Zeilenanzahl
|
||||
cols = image.shape[1] # Auslesen der Spaltenanzahl
|
||||
kanaele = image.shape[2] # Auslesen der Kanaele (3 fuer RGB, 1 fuer Graubild)
|
||||
|
||||
|
||||
def gammaCorrection(v):
|
||||
if (v <= 0.04045 * 255):
|
||||
return ((v / 255) / 12.92)
|
||||
elif (v > 0.04045 * 255):
|
||||
return (((v / 255) + 0.055) / 1.055) ** 2.4
|
||||
if v <= 0.04045 * 255:
|
||||
return float(((v / 255) / 12.92))
|
||||
elif v > 0.04045 * 255:
|
||||
return float((((v / 255) + 0.055) / 1.055) ** 2.4)
|
||||
else:
|
||||
print("Ungültiger Wert!!")
|
||||
return 1
|
||||
|
||||
print(gammaCorrection(image[0,0,0]))
|
||||
|
||||
def reverseGammaCorrection(v_reverse):
|
||||
if (v_reverse <= 0.0031308):
|
||||
return 255 * (12.92 * v_reverse)
|
||||
elif (v_reverse > 0.0031308):
|
||||
return 255 * (1.055 * v_reverse ** 0.41666 - 0.055)
|
||||
if v_reverse <= 0.0031308:
|
||||
return int(255 * (12.92 * v_reverse))
|
||||
elif v_reverse > 0.0031308:
|
||||
return int(255 * (1.055 * v_reverse ** 0.41666 - 0.055))
|
||||
else:
|
||||
print("Ungültiger Wert!!!")
|
||||
return 1
|
||||
|
||||
|
||||
cb_image = np.copy(image)
|
||||
|
||||
for i in range(rows):
|
||||
for j in range(cols):
|
||||
for x in range(3):
|
||||
cb_image[i,j,x] = gammaCorrection(float(image[i,j,x]))
|
||||
|
||||
print(cb_image[0,0])
|
||||
'''
|
||||
0.31399022 0.63951294 0.04649755 Transformationsmatrix zum Konvertieren vom linearen RGB zum LMS Farbraum
|
||||
T = 0.15537241 0.75789446 0.08670142 Multiplikation aus Brucelindbloom und Hunt-Pointer-Estevez Matrixen
|
||||
@ -52,11 +61,8 @@ T_reversed = np.array([[5.47221206,-4.6419601,0.16963708],
|
||||
[-1.1252419, 2.29317094, -0.1678952],
|
||||
[0.02980165, -0.19318073, 1.16364789]])
|
||||
|
||||
|
||||
# for i in range(rows): #Durchgehen aller Pixel des Bildes
|
||||
# for j in range(cols):
|
||||
# k = image[i,j]
|
||||
# #Umwandlungsalgorithmus
|
||||
# Multiplikation der einzelnen Pixelwerte
|
||||
# T.dot(image[x][y])
|
||||
|
||||
|
||||
cv2.namedWindow("Display") # Displaywindow erstellen
|
||||
|
Loading…
x
Reference in New Issue
Block a user