|
|
@@ -22,6 +22,7 @@ def gammaCorrection(v): |
|
|
|
print("Ungültiger Wert!!")
|
|
|
|
return 1
|
|
|
|
|
|
|
|
|
|
|
|
def reverseGammaCorrection(v_reverse):
|
|
|
|
if v_reverse <= 0.0031308:
|
|
|
|
return int(255 * (12.92 * v_reverse))
|
|
|
@@ -32,10 +33,10 @@ def reverseGammaCorrection(v_reverse): |
|
|
|
return 1
|
|
|
|
|
|
|
|
|
|
|
|
cb_image = np.copy(image) #Kopie des Bildarrays
|
|
|
|
cb_image = cb_image.astype('float64') #Casting des Arrays auf Float
|
|
|
|
cb_image = np.copy(image) # Kopie des Bildarrays
|
|
|
|
cb_image = cb_image.astype('float64') # Casting des Arrays auf Float
|
|
|
|
|
|
|
|
#Korrektur des Gamma Faktors für alle Bildelemente
|
|
|
|
# Korrektur des Gamma Faktors für alle Bildelemente
|
|
|
|
for i in range(rows):
|
|
|
|
for j in range(cols):
|
|
|
|
for x in range(3):
|
|
|
@@ -61,12 +62,28 @@ T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708], |
|
|
|
[-1.1252419, 2.29317094, -0.1678952],
|
|
|
|
[0.02980165, -0.19318073, 1.16364789]])
|
|
|
|
|
|
|
|
#Multiplikation der einzelnen Pixelwerte
|
|
|
|
# Multiplikation der einzelnen Pixelwerte
|
|
|
|
for i in range(rows):
|
|
|
|
for j in range(cols):
|
|
|
|
cb_image[i,j] = T.dot(cb_image[i,j])
|
|
|
|
cb_image[i, j] = T.dot(cb_image[i, j])
|
|
|
|
|
|
|
|
# Simulationsmatrizen fuer Protanop
|
|
|
|
|
|
|
|
S_b = np.array([[0, 1.05118294, -0.05116099], #Simulationsmatrix fuer Protanopie
|
|
|
|
[0, 1, 0],
|
|
|
|
[0, 0, 1]])
|
|
|
|
|
|
|
|
S_d = np.array([[1, 0, 0], #Simulationsmatrix fuer Deuteranopie
|
|
|
|
[0.9513092, 0, 0.04866992],
|
|
|
|
[0, 0, 1]])
|
|
|
|
|
|
|
|
S_t = np.array([[1, 0, 0], #Simulationsmatrix fuer Tritanopie
|
|
|
|
[0, 1, 0],
|
|
|
|
[-0.86744736, 1.86727089, 0]])
|
|
|
|
|
|
|
|
#choice = input("Bitte geben Sie den Typ der zu simulierenden Farbblindheit an:(B,D,T)")
|
|
|
|
|
|
|
|
|
|
|
|
#Simulationsmatrizen
|
|
|
|
|
|
|
|
|
|
|
|
cv2.namedWindow("Display") # Displaywindow erstellen
|