Compare commits
3 Commits
3ee51d0be4
...
f1348cfef2
Author | SHA1 | Date | |
---|---|---|---|
![]() |
f1348cfef2 | ||
![]() |
d1cd073fde | ||
![]() |
8c4760c75d |
@ -53,7 +53,8 @@ class Protanopie(Dyschromasie):
|
|||||||
# Einzelne Pixelwertberechnung
|
# Einzelne Pixelwertberechnung
|
||||||
for i in range(self.rows):
|
for i in range(self.rows):
|
||||||
for j in range(self.cols):
|
for j in range(self.cols):
|
||||||
self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
self.cb_image[i, j] = np.flipud(
|
||||||
|
self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||||
|
|
||||||
self.sim_image = np.copy(self.cb_image)
|
self.sim_image = np.copy(self.cb_image)
|
||||||
self.sim_image = self.sim_image.astype('uint8')
|
self.sim_image = self.sim_image.astype('uint8')
|
||||||
@ -83,7 +84,8 @@ class Deuteranopie(Dyschromasie):
|
|||||||
# Einzelne Pixelwertberechnung
|
# Einzelne Pixelwertberechnung
|
||||||
for i in range(self.rows):
|
for i in range(self.rows):
|
||||||
for j in range(self.cols):
|
for j in range(self.cols):
|
||||||
self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
self.cb_image[i, j] = np.flipud(
|
||||||
|
self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||||
|
|
||||||
self.sim_image = np.copy(self.cb_image)
|
self.sim_image = np.copy(self.cb_image)
|
||||||
self.sim_image = self.sim_image.astype('uint8')
|
self.sim_image = self.sim_image.astype('uint8')
|
||||||
@ -112,7 +114,8 @@ class Tritanopie(Dyschromasie):
|
|||||||
# Einzelne Pixelwertberechnung
|
# Einzelne Pixelwertberechnung
|
||||||
for i in range(self.rows):
|
for i in range(self.rows):
|
||||||
for j in range(self.cols):
|
for j in range(self.cols):
|
||||||
self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
self.cb_image[i, j] = np.flipud(
|
||||||
|
self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||||
|
|
||||||
self.sim_image = np.copy(self.cb_image)
|
self.sim_image = np.copy(self.cb_image)
|
||||||
self.sim_image = self.sim_image.astype('uint8')
|
self.sim_image = self.sim_image.astype('uint8')
|
||||||
@ -124,6 +127,7 @@ class Tritanopie(Dyschromasie):
|
|||||||
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
||||||
return self.sim_image
|
return self.sim_image
|
||||||
|
|
||||||
|
|
||||||
root = tk.Tk()
|
root = tk.Tk()
|
||||||
root.title("Projekt Dyschromasie")
|
root.title("Projekt Dyschromasie")
|
||||||
|
|
||||||
@ -135,6 +139,10 @@ kanaele = 0
|
|||||||
sim_pro = tk.IntVar(root)
|
sim_pro = tk.IntVar(root)
|
||||||
sim_deut = tk.IntVar(root)
|
sim_deut = tk.IntVar(root)
|
||||||
sim_tri = tk.IntVar(root)
|
sim_tri = tk.IntVar(root)
|
||||||
|
simGrad = tk.IntVar(root)
|
||||||
|
|
||||||
|
simulationsGradient = tk.Scale(root, from_=0, to_=100, variable=simGrad, orient='horizontal')
|
||||||
|
simulationsGradient.grid(column= 0, row = 1, columnspan=10)
|
||||||
|
|
||||||
def browse():
|
def browse():
|
||||||
# Auswahl des FilePaths
|
# Auswahl des FilePaths
|
||||||
@ -166,9 +174,9 @@ def simulate():
|
|||||||
d = Deuteranopie(img, rows, cols, kanaele)
|
d = Deuteranopie(img, rows, cols, kanaele)
|
||||||
display_array_deut = cv2.cvtColor(np.copy(d.Simulate()), cv2.COLOR_BGR2RGB)
|
display_array_deut = cv2.cvtColor(np.copy(d.Simulate()), cv2.COLOR_BGR2RGB)
|
||||||
|
|
||||||
T = tk.Text(root,height=1,width=15)
|
T = tk.Text(root, height=1, width=15)
|
||||||
T.grid(columnspan=5)
|
T.grid(columnspan=5)
|
||||||
T.insert('current',"Deutranopie:")
|
T.insert('current', "Deutranopie:")
|
||||||
|
|
||||||
conv_SimulationPic_deut = ImageTk.PhotoImage(image=PIL.Image.fromarray(display_array_deut))
|
conv_SimulationPic_deut = ImageTk.PhotoImage(image=PIL.Image.fromarray(display_array_deut))
|
||||||
sim_pic_deut = tk.Label(root, image=conv_SimulationPic_deut)
|
sim_pic_deut = tk.Label(root, image=conv_SimulationPic_deut)
|
||||||
@ -200,20 +208,19 @@ def simulate():
|
|||||||
sim_pic_pro.grid(columnspan=5)
|
sim_pic_pro.grid(columnspan=5)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
btn = tk.Button(root, text="Browse", width=25, command=browse, bg='light blue')
|
btn = tk.Button(root, text="Browse", width=25, command=browse, bg='light blue')
|
||||||
btn.grid(column = 0, row = 0,columnspan=2)
|
btn.grid(column=0, row=0, columnspan=2)
|
||||||
|
|
||||||
simulateButton = tk.Button(root, text="Simulate", width=25, command=simulate, bg='light blue')
|
simulateButton = tk.Button(root, text="Simulate", width=25, command=simulate, bg='light blue')
|
||||||
simulateButton.grid(column = 1, row = 0,columnspan=2)
|
simulateButton.grid(column=1, row=0, columnspan=2)
|
||||||
simulateButton.config(state='disabled')
|
simulateButton.config(state='disabled')
|
||||||
|
|
||||||
checkButton_p = tk.Checkbutton(root, text="Protanop", variable=sim_pro, onvalue=1, offvalue=0, height=5, width=20)
|
checkButton_p = tk.Checkbutton(root, text="Protanop", variable=sim_pro, onvalue=1, offvalue=0, height=5, width=20)
|
||||||
checkButton_d = tk.Checkbutton(root, text="Deutanop", variable=sim_deut, onvalue=1, offvalue=0, height=5, width=20)
|
checkButton_d = tk.Checkbutton(root, text="Deutanop", variable=sim_deut, onvalue=1, offvalue=0, height=5, width=20)
|
||||||
checkButton_t = tk.Checkbutton(root, text="Tritanop", variable=sim_tri, onvalue=1, offvalue=0, height=5, width=20)
|
checkButton_t = tk.Checkbutton(root, text="Tritanop", variable=sim_tri, onvalue=1, offvalue=0, height=5, width=20)
|
||||||
|
|
||||||
checkButton_p.grid(column = 0, row = 1)
|
checkButton_p.grid(column=0, row=2)
|
||||||
checkButton_d.grid(column = 1, row = 1)
|
checkButton_d.grid(column=1, row=2)
|
||||||
checkButton_t.grid(column = 2, row = 1)
|
checkButton_t.grid(column=2, row=2)
|
||||||
|
|
||||||
root.mainloop()
|
root.mainloop()
|
||||||
|
@ -78,7 +78,6 @@ S_t = np.array([[1, 0, 0], #Simulationsmatrix fuer Tritanopi
|
|||||||
for i in range(rows):
|
for i in range(rows):
|
||||||
for j in range(cols):
|
for j in range(cols):
|
||||||
cb_image[i,j] = T_reversed.dot(S_p).dot(T).dot(cb_image[i,j])
|
cb_image[i,j] = T_reversed.dot(S_p).dot(T).dot(cb_image[i,j])
|
||||||
# Da OpenCV Pixelwerte in RGB speichert, aber BGR für den Algorithmus nötig ist, muss die Matrix mit flipud gedreht werden
|
|
||||||
|
|
||||||
sim_image = np.copy(cb_image)
|
sim_image = np.copy(cb_image)
|
||||||
sim_image = sim_image.astype('uint8')
|
sim_image = sim_image.astype('uint8')
|
||||||
|
Loading…
x
Reference in New Issue
Block a user