Dieses Projekt dient der digitalen Umwandlung von Bildern in simulierte Darstellung aus Sicht eines rot-grün-blinden Menschen.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Farbaenderung.py 4.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127
  1. import numpy as np
  2. import cv2
  3. import sys
  4. def createGammaLookup():
  5. return np.array([removeGammaCorrection(i) for i in np.arange(0, 256)]).astype("float64")
  6. def createReverseGammaLookup():
  7. return np.array([applyGammaCorrection(i / 255) for i in np.arange(0.0, 256.0)]).astype("uint8")
  8. def removeGammaCorrection(v):
  9. if v <= 0.04045 * 255:
  10. return (v / 255) / 12.92
  11. elif v > 0.04045 * 255:
  12. return (((v / 255) + 0.055) / 1.055) ** 2.4
  13. def applyGammaCorrection(v_reverse):
  14. if abs(v_reverse) <= 0.0031308:
  15. return round(255 * (12.92 * abs(v_reverse)))
  16. else:
  17. if (round(255 * (1.055 * abs(v_reverse) ** 0.41666 - 0.055))) > 255:
  18. return 255 - (round(255 * (1.055 * abs(v_reverse) ** 0.41666 - 0.055)) - 255)
  19. else:
  20. return round(255 * (1.055 * abs(v_reverse) ** 0.41666 - 0.055))
  21. class Dyschromasie:
  22. cb_image = np.array([]).astype('float64')
  23. sim_image = np.array([]).astype('int64')
  24. def __init__(self, img_mat=np.array([]), rows=0, cols=0, kanaele=0, sim_faktor=0, sim_kind='Deuteranop'):
  25. self.rows = rows
  26. self.cols = cols
  27. self.kanaele = kanaele
  28. self.img_mat = img_mat
  29. self.sim_faktor = sim_faktor
  30. self.sim_kind = sim_kind
  31. T = np.array([[0.31399022, 0.63951294, 0.04649755],
  32. [0.15537241, 0.75789446, 0.08670142],
  33. [0.01775239, 0.10944209, 0.87256922]])
  34. T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708],
  35. [-1.1252419, 2.29317094, -0.1678952],
  36. [0.02980165, -0.19318073, 1.16364789]])
  37. def Simulate(self):
  38. removeGammaCorrectionLUT = createGammaLookup()
  39. if self.sim_kind == 'Protanop':
  40. sim_mat = np.array([[(1 - self.sim_faktor), 1.05118294 * self.sim_faktor, -0.05116099 * self.sim_faktor],
  41. [0, 1, 0],
  42. [0, 0, 1]])
  43. elif self.sim_kind == 'Deuteranop':
  44. sim_mat = np.array([[1, 0, 0],
  45. [0.9513092 * self.sim_faktor, (1 - self.sim_faktor), 0.04866992 * self.sim_faktor],
  46. [0, 0, 1]])
  47. elif self.sim_kind == 'Tritanop':
  48. sim_mat = np.array([[1, 0, 0],
  49. [0, 1, 0],
  50. [-0.86744736 * self.sim_faktor, 1.86727089 * self.sim_faktor, (1 - self.sim_faktor)]])
  51. # Gammakorrektur durchfuehren
  52. self.cb_image = np.copy(self.img_mat).astype('float64')
  53. self.cb_image = cv2.LUT(self.img_mat, removeGammaCorrectionLUT)
  54. rechen_Mat = np.copy(self.T_reversed.dot(sim_mat).dot(self.T))
  55. # Einzelne Pixelwertberechnung
  56. for i in range(self.rows):
  57. for j in range(self.cols):
  58. self.cb_image[i, j] = rechen_Mat.dot(self.cb_image[i, j])
  59. self.sim_image = np.copy(self.cb_image)
  60. self.sim_image = self.sim_image.astype('int64')
  61. # Rücktransformation der Gammawerte
  62. for i in range(self.rows):
  63. for j in range(self.cols):
  64. for x in range(3):
  65. self.sim_image[i, j, x] = applyGammaCorrection(self.cb_image[i, j, x])
  66. return self.sim_image.astype('uint8')
  67. def daltonize(self):
  68. err2mod = np.array([[0, 0, 0], [0.7, 1, 0], [0.7, 0, 1]])
  69. simulated_image = self.Simulate()
  70. E = np.copy(simulated_image).astype('int32')
  71. for i in range(self.rows):
  72. for j in range(self.cols):
  73. for x in range(3):
  74. E[i, j, x] = abs(int(self.img_mat[i, j, x]) - int(simulated_image[i, j, x]))
  75. ERR = np.zeros_like(self.img_mat).astype('int32')
  76. for i in range(self.rows):
  77. for j in range(self.cols):
  78. err = E[i, j, :3]
  79. ERR[i, j, :3] = np.dot(err2mod, err)
  80. dtpn = np.copy(self.img_mat).astype('int32')
  81. for i in range(self.rows):
  82. for j in range(self.cols):
  83. for x in range(3):
  84. dtpn[i, j, x] = abs(int(ERR[i, j, x]) + int(self.img_mat[i, j, x]))
  85. for i in range(self.rows):
  86. for j in range(self.cols):
  87. dtpn[i, j, 0] = max(0, dtpn[i, j, 0])
  88. dtpn[i, j, 0] = min(255, dtpn[i, j, 0])
  89. dtpn[i, j, 1] = max(0, dtpn[i, j, 1])
  90. dtpn[i, j, 1] = min(255, dtpn[i, j, 1])
  91. dtpn[i, j, 2] = max(0, dtpn[i, j, 2])
  92. dtpn[i, j, 2] = min(255, dtpn[i, j, 2])
  93. result = dtpn.astype('uint8')
  94. dalt = Dyschromasie(result, self.rows, self.cols, self.kanaele, self.sim_faktor, self.sim_kind)
  95. return dalt.Simulate()