2026-01-13 09:57:40 +01:00

172 lines
4.2 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.task.all;
entity add is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
signal_a_read : out std_logic;
signal_a_readdata : in std_logic_vector( 31 downto 0 );
signal_b_read : out std_logic;
signal_b_readdata : in std_logic_vector( 31 downto 0 );
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity add;
architecture rtl of add is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
signal fa_start: std_logic;
signal fa_done: std_logic;
signal fa_sum: std_logic_vector(31 downto 0);
signal a_value: std_logic_vector(31 downto 0);
signal b_value: std_logic_vector(31 downto 0);
signal sample_done: std_logic;
signal calc_cnt_int: integer range 0 to 15;
type calc_state_t is (
C_IDLE,
C_READ_A_REQ, C_READ_A_LATCH,
C_READ_B_REQ, C_READ_B_LATCH,
C_START_ADD, C_WAIT_ADD,
C_WRITE_RESULT
);
signal calc_state: calc_state_t:=C_IDLE;
begin
u_float_add : entity work.float_add
port map(
clk => clk,
reset => reset,
start => fa_start,
done => fa_done,
A => a_value,
B => b_value,
sum => fa_sum
);
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
calc_state <= C_IDLE;
signal_a_read <= '0';
signal_b_read <= '0';
signal_write <= '0';
signal_writedata <= (others => '0');
calc_cnt_int <= 0;
fa_start <= '0';
a_value <= (others => '0');
b_value <= (others => '0');
sample_done <= '0';
index <= 0;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
fa_start <= '0';
signal_a_read <= '0';
signal_b_read <= '0';
signal_write <= '0';
sample_done <= '0';
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case;
case calc_state is
when C_IDLE =>
if current_task_state = work.task.TASK_RUNNING then
calc_state <= C_READ_A_REQ;
end if;
when C_READ_A_REQ =>
signal_a_read <= '1';
calc_state <= C_READ_A_LATCH;
when C_READ_A_LATCH =>
a_value <= signal_a_readdata;
calc_state <= C_READ_B_REQ;
when C_READ_B_REQ =>
signal_b_read <= '1';
calc_state <= C_READ_B_LATCH;
when C_READ_B_LATCH =>
b_value <= signal_b_readdata;
calc_state <= C_START_ADD;
when C_START_ADD =>
fa_start <='1';
calc_state <= C_WAIT_ADD;
when C_WAIT_ADD =>
if ( fa_done = '1' ) then
calc_state <= C_WRITE_RESULT;
end if;
when C_WRITE_RESULT =>
signal_write <= '1' ;
signal_writedata <= fa_sum;
calc_cnt_int <= calc_cnt_int + 1;
end case;
end if;
end process sync;
task_state <= current_task_state;
end architecture rtl;