@@ -6,6 +6,7 @@ library work; | |||
use work.reg32.all; | |||
use work.task.all; | |||
-- Anlegen der Variablen des Programms | |||
entity add is | |||
port ( | |||
clk : in std_logic; | |||
@@ -25,12 +26,30 @@ entity add is | |||
); | |||
end entity add; | |||
-- Signale anlegen | |||
architecture rtl of add is | |||
signal current_task_state : work.task.State; | |||
signal next_task_state : work.task.State; | |||
signal index : integer range 0 to work.task.STREAM_LEN; | |||
signal index_run :integer range 0 to 2; | |||
signal start_value : std_logic; | |||
signal done_value : std_logic; | |||
signal write_value : std_logic_vector( 31 downto 0 ); | |||
begin | |||
-- Instanziierung der float_add.vhd | |||
u_float_add : entity work.float_add | |||
port map( | |||
clk => clk, | |||
reset => reset, | |||
start => start_value, | |||
done => done_value, | |||
a => signal_a_readdata, | |||
b => signal_b_readdata, | |||
sum => write_value | |||
); | |||
-- Zustandsautomat fuer die Zustandsswechsel | |||
task_state_transitions : process ( current_task_state, task_start, index ) is | |||
begin | |||
next_task_state <= current_task_state; | |||
@@ -40,7 +59,7 @@ begin | |||
next_task_state <= work.task.TASK_RUNNING; | |||
end if; | |||
when work.task.TASK_RUNNING => | |||
if ( index = work.task.STREAM_LEN - 1 ) then | |||
if ( index = work.task.STREAM_LEN ) then | |||
next_task_state <= work.task.TASK_DONE; | |||
end if; | |||
when work.task.TASK_DONE => | |||
@@ -50,24 +69,55 @@ begin | |||
end case; | |||
end process task_state_transitions; | |||
-- Zustandautomat fuer die Berechnung | |||
sync : process ( clk, reset ) is | |||
begin | |||
if ( reset = '1' ) then | |||
current_task_state <= work.task.TASK_IDLE; | |||
index <= 0; | |||
-- alle Signale in der Reset Bedingung initialisieren | |||
start_value <= '0'; | |||
signal_a_read <= '0'; | |||
signal_b_read <= '0'; | |||
signal_write <= '0'; | |||
elsif ( rising_edge( clk ) ) then | |||
current_task_state <= next_task_state; | |||
case next_task_state is | |||
when work.task.TASK_IDLE => | |||
index <= 0; | |||
signal_write <= '0'; | |||
when work.task.TASK_RUNNING => | |||
index <= index + 1; | |||
signal_write <= '1'; | |||
signal_writedata <= ( others => '0' ); | |||
when work.task.TASK_DONE => | |||
index <= 0; | |||
signal_write <= '0'; | |||
-- idle | |||
when work.task.TASK_IDLE => | |||
index <= 0; | |||
signal_write <= '0'; | |||
-- running | |||
when work.task.TASK_RUNNING => | |||
case index_run is | |||
when 0 => | |||
signal_writedata <= ( others => '0' ); | |||
start_value <= '1'; | |||
index_run <= index_run + 1; | |||
when 1 => | |||
if(done_value = '1') then | |||
start_value <= '0'; | |||
signal_write <= '1'; | |||
signal_writedata <= write_value; | |||
signal_a_read <= '1'; | |||
signal_b_read <= '1'; | |||
index_run <= index_run + 1; | |||
end if; | |||
when 2 => | |||
signal_write <= '0'; | |||
signal_a_read <= '0'; | |||
signal_b_read <= '0'; | |||
index_run <= 0; | |||
index <= index + 1; | |||
end case; | |||
-- done | |||
when work.task.TASK_DONE => | |||
index <= 0; | |||
end case; | |||
end if; | |||
end process sync; |
@@ -25,6 +25,11 @@ architecture rtl of rand is | |||
signal current_task_state : work.task.State; | |||
signal next_task_state : work.task.State; | |||
signal index : integer range 0 to work.task.STREAM_LEN; | |||
signal lfsr : std_logic_vector( 31 downto 0 ); | |||
signal lfsr_next : std_logic_vector( 31 downto 0 ); | |||
signal bitte : std_logic; | |||
signal exponent : std_logic_vector( 7 downto 0 ); | |||
signal ieee754 : std_logic_vector( 31 downto 0 ); | |||
begin | |||
task_state_transitions : process ( current_task_state, task_start, index ) is | |||
@@ -46,24 +51,39 @@ begin | |||
end case; | |||
end process task_state_transitions; | |||
exponent <= std_logic_vector(to_unsigned(128, 8) + unsigned(lfsr(23 downto 23))) when (lfsr(30) = '1') | |||
else std_logic_vector(to_unsigned(124, 8) + unsigned(lfsr(24 downto 23))); | |||
ieee754 <= lfsr(31) & exponent(7 downto 0) & lfsr(22 downto 0); | |||
bitte <= (lfsr(31) XOR lfsr(21) XOR lfsr(1)); | |||
lfsr_next <= lfsr(30 downto 0) & bitte; | |||
sync : process ( clk, reset ) is | |||
begin | |||
if ( reset = '1' ) then | |||
current_task_state <= work.task.TASK_IDLE; | |||
index <= 0; | |||
-- alle Signale in der Reset Bedingung initialisieren | |||
lfsr <= seed; | |||
elsif ( rising_edge( clk ) ) then | |||
current_task_state <= next_task_state; | |||
case next_task_state is | |||
when work.task.TASK_IDLE => | |||
index <= 0; | |||
signal_write <= '0'; | |||
when work.task.TASK_RUNNING => | |||
index <= index + 1; | |||
signal_write <= '1'; | |||
signal_writedata <= ( others => '0' ); | |||
when work.task.TASK_DONE => | |||
index <= 0; | |||
signal_write <= '0'; | |||
when work.task.TASK_IDLE => | |||
index <= 0; | |||
signal_write <= '0'; | |||
lfsr <= seed; | |||
when work.task.TASK_RUNNING => | |||
signal_write <= '1'; | |||
signal_writedata <= ( ieee754 ); | |||
lfsr <= lfsr_next; | |||
index <= index + 1; | |||
when work.task.TASK_DONE => | |||
index <= 0; | |||
signal_write <= '0'; | |||
end case; | |||
end if; | |||
end process sync; |
@@ -29,8 +29,31 @@ architecture rtl of sine is | |||
signal current_task_state : work.task.State; | |||
signal next_task_state : work.task.State; | |||
signal index : integer range 0 to work.task.STREAM_LEN; | |||
signal index_run :integer range 0 to 2; | |||
signal data_valid : std_logic; | |||
signal busy : std_logic; | |||
signal result_valid : std_logic; | |||
signal angle : signed(31 downto 0); | |||
signal write_value : signed(31 downto 0); | |||
begin | |||
-- Instanziierung der float_sine.vhd | |||
u_float_sine : entity work.float_sine | |||
generic map( | |||
ITERATIONS => 8 | |||
) | |||
port map( | |||
clk => clk, | |||
reset => reset, | |||
data_valid => data_valid, | |||
busy => busy, | |||
result_valid => result_valid, | |||
angle => angle, | |||
sine => write_value | |||
); | |||
-- Zustandsautomat fuer die Zustandsswechsel | |||
task_state_transitions : process ( current_task_state, task_start, index ) is | |||
begin | |||
next_task_state <= current_task_state; | |||
@@ -40,7 +63,7 @@ begin | |||
next_task_state <= work.task.TASK_RUNNING; | |||
end if; | |||
when work.task.TASK_RUNNING => | |||
if ( index = work.task.STREAM_LEN - 1 ) then | |||
if ( index = work.task.STREAM_LEN ) then -- - 1 ) then | |||
next_task_state <= work.task.TASK_DONE; | |||
end if; | |||
when work.task.TASK_DONE => | |||
@@ -50,24 +73,49 @@ begin | |||
end case; | |||
end process task_state_transitions; | |||
-- Zustandautomat fuer die Berechnung | |||
sync : process ( clk, reset ) is | |||
begin | |||
if ( reset = '1' ) then | |||
current_task_state <= work.task.TASK_IDLE; | |||
index <= 0; | |||
-- alle Signale in der Reset Bedingung initialisieren | |||
data_valid <= '0'; | |||
signal_write <= '0'; | |||
angle <= x"00000000"; | |||
elsif ( rising_edge( clk ) ) then | |||
current_task_state <= next_task_state; | |||
case next_task_state is | |||
when work.task.TASK_IDLE => | |||
index <= 0; | |||
signal_write <= '0'; | |||
when work.task.TASK_RUNNING => | |||
index <= index + 1; | |||
signal_write <= '1'; | |||
signal_writedata <= ( others => '0' ); | |||
when work.task.TASK_DONE => | |||
index <= 0; | |||
signal_write <= '0'; | |||
-- idle | |||
when work.task.TASK_IDLE => | |||
index <= 0; | |||
signal_write <= '0'; | |||
-- running | |||
when work.task.TASK_RUNNING => | |||
case index_run is | |||
when 0 => | |||
signal_write <= '0'; | |||
angle <= angle + signed(step_size);--signed(phase) | |||
data_valid <= '1'; | |||
index_run <= index_run + 1; | |||
when 1 => | |||
data_valid <= '0'; | |||
if(result_valid = '1') then | |||
signal_write <= '1'; | |||
signal_writedata <= std_logic_vector(write_value); | |||
index_run <= index_run + 1; | |||
end if; | |||
when 2 => | |||
signal_write <= '0'; | |||
index_run <= 0; | |||
index <= index + 1; | |||
end case; | |||
-- done | |||
when work.task.TASK_DONE => | |||
index <= 0; | |||
signal_write <= '0'; | |||
end case; | |||
end if; | |||
end process sync; |
@@ -2,10 +2,23 @@ | |||
#include "system/data_channel.h" | |||
#include "system/float_word.h" | |||
int task_add_run( void * task ) { | |||
int task_add_run( void * task ) | |||
{ | |||
add_config * config = (add_config * ) task; | |||
// TODO | |||
// Nachfolgende Antworten Lesen den FIFO der ersten und zweiten Datenquelle aus | |||
// den jeweils gelesenen Wert mit 4 und speichern das Ergebnis in der Datensenke | |||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) | |||
{ | |||
float a, b; | |||
data_channel_read( config->sources[0], (uint32_t *) & a ); | |||
data_channel_read( config->sources[1], (uint32_t *) & b ); | |||
return 0; | |||
} | |||
float_word c; | |||
c.value = a + b; | |||
data_channel_write( config->sink, c.word ); | |||
} | |||
return 0; | |||
} |
@@ -2,11 +2,43 @@ | |||
#include "system/hardware_task.h" | |||
#include "system/data_channel.h" | |||
#include "system/float_word.h" | |||
#include <stdio.h> | |||
#include <system.h> | |||
int task_rand_run( void * task ) { | |||
// TODO | |||
// Nachfolgende Anweisungen Schreiben 1024 Mal den seed Wert in den FIFO für Rand | |||
rand_config * config = ( rand_config * ) task; | |||
float_word seed = {.value = config->seed}; | |||
return 0; | |||
} | |||
uint32_t lfsr = seed.word; | |||
uint32_t bit = 0; // Must be 32-bit to allow bit << 31 later in the code | |||
for( uint32_t i = 0; i < DATA_CHANNEL_DEPTH; i++ ) { | |||
float_word res; | |||
uint32_t sign = (lfsr >> 31) & 1; | |||
uint32_t exponent; | |||
uint32_t mantisse = lfsr & 0x7FFFFF; | |||
if((lfsr >> 30) & 1) // MSB exponent | |||
{ | |||
exponent = 128 + ((lfsr >> 23) & 1); // 128 to 129 | |||
} | |||
else | |||
{ | |||
exponent = 124 + ((lfsr >> 23) & 3); // 124 to 127 | |||
} | |||
uint32_t ieee754 = (sign << 31) | (exponent << 23) | mantisse; | |||
res.value = ieee754; | |||
data_channel_write( config->base.sink, ieee754); | |||
// fibonacci feedback polynomial: x^31 + x^21 + x^1 + 1 | |||
bit = ((lfsr >> 31) ^ (lfsr >> 21) ^ (lfsr >> 1)) & 1; | |||
lfsr = (lfsr << 1) | bit; | |||
} | |||
return 0; | |||
} |
@@ -1,10 +1,21 @@ | |||
#include "system/task_sine.h" | |||
#include "system/data_channel.h" | |||
#include "system/float_word.h" | |||
#include <math.h> | |||
int task_sine_run( void * data ) { | |||
// TODO | |||
// Nachfolgende Anweisungen Schreiben 1024 Mal den Wert 4 in den FIFO für Sinus | |||
sine_config * task = ( sine_config * ) data; | |||
uint32_t data_channel_base = task->base.sink; | |||
data_channel_clear( data_channel_base ); | |||
return 0; | |||
for( uint32_t i = 0; i < DATA_CHANNEL_DEPTH; i++ ) { | |||
float_word res; | |||
res.value = task->amplitude * sin((2 * M_PI / task->samples_per_periode) * i + task->phase ); | |||
data_channel_write( data_channel_base, res.word ); | |||
} | |||
return 0; | |||
} |