Browse Source

Loesung von add sin cos und rand

master
erhardtph78456 1 month ago
parent
commit
a325c8ddb6

+ 61
- 11
hardware/signal_processing/add.vhd View File

@@ -6,6 +6,7 @@ library work;
use work.reg32.all;
use work.task.all;

-- Anlegen der Variablen des Programms
entity add is
port (
clk : in std_logic;
@@ -25,12 +26,30 @@ entity add is
);
end entity add;

-- Signale anlegen
architecture rtl of add is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
signal index_run :integer range 0 to 2;
signal start_value : std_logic;
signal done_value : std_logic;
signal write_value : std_logic_vector( 31 downto 0 );

begin
-- Instanziierung der float_add.vhd
u_float_add : entity work.float_add
port map(
clk => clk,
reset => reset,
start => start_value,
done => done_value,
a => signal_a_readdata,
b => signal_b_readdata,
sum => write_value
);

-- Zustandsautomat fuer die Zustandsswechsel
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
@@ -40,7 +59,7 @@ begin
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
if ( index = work.task.STREAM_LEN ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
@@ -50,24 +69,55 @@ begin
end case;
end process task_state_transitions;

-- Zustandautomat fuer die Berechnung
sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
-- alle Signale in der Reset Bedingung initialisieren
start_value <= '0';
signal_a_read <= '0';
signal_b_read <= '0';
signal_write <= '0';
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
-- idle
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
-- running
when work.task.TASK_RUNNING =>
case index_run is

when 0 =>
signal_writedata <= ( others => '0' );
start_value <= '1';
index_run <= index_run + 1;

when 1 =>
if(done_value = '1') then
start_value <= '0';
signal_write <= '1';
signal_writedata <= write_value;
signal_a_read <= '1';
signal_b_read <= '1';

index_run <= index_run + 1;
end if;
when 2 =>
signal_write <= '0';
signal_a_read <= '0';
signal_b_read <= '0';
index_run <= 0;
index <= index + 1;
end case;
-- done
when work.task.TASK_DONE =>
index <= 0;
end case;
end if;
end process sync;

+ 30
- 10
hardware/signal_processing/rand.vhd View File

@@ -25,6 +25,11 @@ architecture rtl of rand is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
signal lfsr : std_logic_vector( 31 downto 0 );
signal lfsr_next : std_logic_vector( 31 downto 0 );
signal bitte : std_logic;
signal exponent : std_logic_vector( 7 downto 0 );
signal ieee754 : std_logic_vector( 31 downto 0 );

begin
task_state_transitions : process ( current_task_state, task_start, index ) is
@@ -46,24 +51,39 @@ begin
end case;
end process task_state_transitions;

exponent <= std_logic_vector(to_unsigned(128, 8) + unsigned(lfsr(23 downto 23))) when (lfsr(30) = '1')
else std_logic_vector(to_unsigned(124, 8) + unsigned(lfsr(24 downto 23)));

ieee754 <= lfsr(31) & exponent(7 downto 0) & lfsr(22 downto 0);

bitte <= (lfsr(31) XOR lfsr(21) XOR lfsr(1));
lfsr_next <= lfsr(30 downto 0) & bitte;

sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
-- alle Signale in der Reset Bedingung initialisieren
lfsr <= seed;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';

lfsr <= seed;
when work.task.TASK_RUNNING =>
signal_write <= '1';
signal_writedata <= ( ieee754 );

lfsr <= lfsr_next;
index <= index + 1;

when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case;
end if;
end process sync;

+ 59
- 11
hardware/signal_processing/sine.vhd View File

@@ -29,8 +29,31 @@ architecture rtl of sine is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
signal index_run :integer range 0 to 2;
signal data_valid : std_logic;
signal busy : std_logic;
signal result_valid : std_logic;
signal angle : signed(31 downto 0);
signal write_value : signed(31 downto 0);

begin
-- Instanziierung der float_sine.vhd
u_float_sine : entity work.float_sine
generic map(
ITERATIONS => 8
)
port map(
clk => clk,
reset => reset,

data_valid => data_valid,
busy => busy,
result_valid => result_valid,
angle => angle,
sine => write_value
);

-- Zustandsautomat fuer die Zustandsswechsel
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
@@ -40,7 +63,7 @@ begin
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
if ( index = work.task.STREAM_LEN ) then -- - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
@@ -50,24 +73,49 @@ begin
end case;
end process task_state_transitions;

-- Zustandautomat fuer die Berechnung
sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
-- alle Signale in der Reset Bedingung initialisieren
data_valid <= '0';
signal_write <= '0';
angle <= x"00000000";
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
-- idle
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
-- running
when work.task.TASK_RUNNING =>
case index_run is
when 0 =>
signal_write <= '0';
angle <= angle + signed(step_size);--signed(phase)
data_valid <= '1';
index_run <= index_run + 1;
when 1 =>
data_valid <= '0';
if(result_valid = '1') then
signal_write <= '1';
signal_writedata <= std_logic_vector(write_value);

index_run <= index_run + 1;
end if;
when 2 =>
signal_write <= '0';
index_run <= 0;
index <= index + 1;
end case;
-- done
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case;
end if;
end process sync;

+ 17
- 4
software/signal_processing/add.c View File

@@ -2,10 +2,23 @@
#include "system/data_channel.h"
#include "system/float_word.h"

int task_add_run( void * task ) {
int task_add_run( void * task )
{
add_config * config = (add_config * ) task;

// TODO
// Nachfolgende Antworten Lesen den FIFO der ersten und zweiten Datenquelle aus
// den jeweils gelesenen Wert mit 4 und speichern das Ergebnis in der Datensenke
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i)
{
float a, b;
data_channel_read( config->sources[0], (uint32_t *) & a );
data_channel_read( config->sources[1], (uint32_t *) & b );

return 0;
}
float_word c;
c.value = a + b;
data_channel_write( config->sink, c.word );
}

return 0;

}

+ 35
- 3
software/signal_processing/rand.c View File

@@ -2,11 +2,43 @@
#include "system/hardware_task.h"
#include "system/data_channel.h"
#include "system/float_word.h"
#include <stdio.h>
#include <system.h>

int task_rand_run( void * task ) {

// TODO
// Nachfolgende Anweisungen Schreiben 1024 Mal den seed Wert in den FIFO für Rand
rand_config * config = ( rand_config * ) task;
float_word seed = {.value = config->seed};

return 0;
}
uint32_t lfsr = seed.word;
uint32_t bit = 0; // Must be 32-bit to allow bit << 31 later in the code

for( uint32_t i = 0; i < DATA_CHANNEL_DEPTH; i++ ) {
float_word res;

uint32_t sign = (lfsr >> 31) & 1;
uint32_t exponent;
uint32_t mantisse = lfsr & 0x7FFFFF;

if((lfsr >> 30) & 1) // MSB exponent
{
exponent = 128 + ((lfsr >> 23) & 1); // 128 to 129
}
else
{
exponent = 124 + ((lfsr >> 23) & 3); // 124 to 127
}

uint32_t ieee754 = (sign << 31) | (exponent << 23) | mantisse;
res.value = ieee754;

data_channel_write( config->base.sink, ieee754);

// fibonacci feedback polynomial: x^31 + x^21 + x^1 + 1
bit = ((lfsr >> 31) ^ (lfsr >> 21) ^ (lfsr >> 1)) & 1;
lfsr = (lfsr << 1) | bit;
}

return 0;
}

+ 13
- 2
software/signal_processing/sine.c View File

@@ -1,10 +1,21 @@
#include "system/task_sine.h"
#include "system/data_channel.h"
#include "system/float_word.h"
#include <math.h>

int task_sine_run( void * data ) {

// TODO
// Nachfolgende Anweisungen Schreiben 1024 Mal den Wert 4 in den FIFO für Sinus
sine_config * task = ( sine_config * ) data;
uint32_t data_channel_base = task->base.sink;
data_channel_clear( data_channel_base );

return 0;
for( uint32_t i = 0; i < DATA_CHANNEL_DEPTH; i++ ) {
float_word res;
res.value = task->amplitude * sin((2 * M_PI / task->samples_per_periode) * i + task->phase );

data_channel_write( data_channel_base, res.word );
}

return 0;
}

Loading…
Cancel
Save