Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c90753aa23 | ||
|
|
5efb80253b |
@ -30,35 +30,7 @@ architecture rtl of add is
|
||||
signal next_task_state : work.task.State;
|
||||
signal index : integer range 0 to work.task.STREAM_LEN;
|
||||
|
||||
-- Zustände für die Zustandsmaschine zur Berechnung
|
||||
type SigState is (
|
||||
SIG_IDLE,
|
||||
SIG_READ,
|
||||
SIG_ADD,
|
||||
SIG_WRITE
|
||||
);
|
||||
|
||||
signal current_sig_state : SigState;
|
||||
signal next_sig_state : SigState;
|
||||
|
||||
signal signal_add_start : std_logic;
|
||||
signal signal_add_done : std_logic;
|
||||
|
||||
|
||||
begin
|
||||
|
||||
u_float_add : entity work.float_add
|
||||
port map(
|
||||
clk => clk,
|
||||
reset => reset,
|
||||
start => signal_add_start,
|
||||
done => signal_add_done,
|
||||
A => signal_a_readdata,
|
||||
B => signal_b_readdata,
|
||||
sum => signal_writedata
|
||||
);
|
||||
|
||||
|
||||
task_state_transitions : process ( current_task_state, task_start, index ) is
|
||||
begin
|
||||
next_task_state <= current_task_state;
|
||||
@ -68,7 +40,7 @@ begin
|
||||
next_task_state <= work.task.TASK_RUNNING;
|
||||
end if;
|
||||
when work.task.TASK_RUNNING =>
|
||||
if ( index = work.task.STREAM_LEN) then
|
||||
if ( index = work.task.STREAM_LEN - 1 ) then
|
||||
next_task_state <= work.task.TASK_DONE;
|
||||
end if;
|
||||
when work.task.TASK_DONE =>
|
||||
@ -78,75 +50,24 @@ begin
|
||||
end case;
|
||||
end process task_state_transitions;
|
||||
|
||||
sig_state_transitions : process (all) is
|
||||
begin
|
||||
next_sig_state <= current_sig_state;
|
||||
case current_sig_state is
|
||||
when SIG_IDLE =>
|
||||
if ( current_task_state = work.task.TASK_RUNNING ) then
|
||||
next_sig_state <= SIG_READ;
|
||||
end if;
|
||||
when SIG_READ =>
|
||||
next_sig_state <= SIG_ADD;
|
||||
when SIG_ADD =>
|
||||
if ( signal_add_done = '1') then
|
||||
next_sig_state <= SIG_WRITE;
|
||||
end if;
|
||||
when SIG_WRITE =>
|
||||
next_sig_state <= SIG_IDLE;
|
||||
end case;
|
||||
end process sig_state_transitions;
|
||||
|
||||
task_sync : process ( clk, reset ) is
|
||||
sync : process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
current_task_state <= work.task.TASK_IDLE;
|
||||
--index <= 0;
|
||||
index <= 0;
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
current_task_state <= next_task_state;
|
||||
case next_task_state is
|
||||
when work.task.TASK_IDLE =>
|
||||
null;
|
||||
-- signal_write <= '0';
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
when work.task.TASK_RUNNING =>
|
||||
null;
|
||||
-- signal_write <= '1';
|
||||
-- signal_writedata <= ( others => '0' );
|
||||
index <= index + 1;
|
||||
signal_write <= '1';
|
||||
signal_writedata <= ( others => '0' );
|
||||
when work.task.TASK_DONE =>
|
||||
null;
|
||||
-- signal_write <= '0';
|
||||
end case;
|
||||
end if;
|
||||
end process task_sync;
|
||||
|
||||
sync : process (all) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
current_sig_state <= SIG_IDLE;
|
||||
index <= 0;
|
||||
signal_a_read <= '0';
|
||||
signal_b_read <= '0';
|
||||
signal_add_start <= '0';
|
||||
signal_write <= '0';
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
current_sig_state <= next_sig_state;
|
||||
signal_write <= '0';
|
||||
signal_a_read <= '0';
|
||||
signal_b_read <= '0';
|
||||
case next_sig_state is
|
||||
when SIG_IDLE =>
|
||||
if (index = 0) then
|
||||
current_sig_state <= SIG_ADD;
|
||||
end if;
|
||||
when SIG_READ =>
|
||||
signal_a_read <= '1';
|
||||
signal_b_read <= '1';
|
||||
when SIG_ADD =>
|
||||
signal_add_start <= '1';
|
||||
when SIG_WRITE =>
|
||||
signal_add_start <= '0';
|
||||
signal_write <= '1';
|
||||
index <= index + 1;
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
end case;
|
||||
end if;
|
||||
end process sync;
|
||||
|
||||
@ -1,13 +1,26 @@
|
||||
------------------------------------------------------------------------
|
||||
-- fft
|
||||
--
|
||||
-- calculation of FFT magnitude
|
||||
-- calculation of FFT magnitudes
|
||||
--
|
||||
-- Inputs:
|
||||
-- 32-Bit Floating Point number in range +-16 expected (loaded from FIFO)
|
||||
--
|
||||
-- Outputs
|
||||
-- 32-Bit Floating Point number in range +-16 calculated (stored in FIFO)
|
||||
--
|
||||
--
|
||||
-- Zahlen aus dem Eingangs-FIFO liegen in 32-Bit Floating Point mit Wertebereich +-16 vor
|
||||
-- Diese Zahlen müssen in Floating Point auf den Wertebereich +-1 gebracht werden (In Floating Point können Sie durch :16 teilen, wenn Sie den Exponenten der Floating Point Zahl um -4 verkleinern, falls dieser ungleich Null ist)
|
||||
-- Die auf den Wertebereich +-1 gebrachten Floating Point Zahlen mit to_fixed auf eine Fixpointzahl wandeln
|
||||
-- Diese Fixpointzahl kann dem FFT IP-Core (fftmain) als Eingangswert übergeben werden (Realteil = skalierte auf Fixpoint gewandelte Zahlen; Imaginärteil=0)
|
||||
-- Die vom FFT IP-Core berechneten werden (Realteil und Imaginärteil) können direkt dem IP-Core für die FFT Magnitude Berechnung (fft_magnitude_calc) übergeben werden (dieser arbeitet auch in Fixpoint im gleichen Wertebereich)
|
||||
-- Das Ergebnis des FFT Magnitude Berechnung IP-Cores (fft_magnitude_calc) dann auf Floating Point wandeln (to_float)
|
||||
-- Diese Floating Point Zahlen dann wieder skalieren mit *16 bzw. *32 für den DC-Anteil um auf den ursprünglichen Wertebereich mit +-16 zu kommen (aus dem FFT IP-Core kommt der DC-Anteil / Index 0 um den Faktor 2 zu klein, deswegen dort *32).
|
||||
-- (In Floating Point können Sie *16 machen, wenn Sie den Exponenten der Floating Point Zahl um +4 vergrößern, *32 wenn dieser um +5 vergrößert wird, falls der Exponent ungleich Null ist)
|
||||
-- Die Ergebnisse liegen noch in der bit-reveserd order vor (FFT IP-Core arbeitet nicht in-place) und müssen deswegen noch auf die natural order gebracht werden (https://de.mathworks.com/help/dsp/ug/linear-and-bit-reversed-output-order.html)
|
||||
-- (z.B: ein Array verwenden, um die Werte zu sortieren)
|
||||
-- Dann das Ergebnis in den Ausgangsfifo speichern
|
||||
--
|
||||
-----------------------------------------------------------------------
|
||||
library ieee;
|
||||
@ -19,14 +32,13 @@ library work;
|
||||
use work.task.all;
|
||||
use work.float.all;
|
||||
|
||||
|
||||
entity fft is
|
||||
generic (
|
||||
|
||||
-- input data width of real/img part
|
||||
-- input data width of real/img part
|
||||
input_data_width : integer := 32;
|
||||
|
||||
-- output data width of real/img part
|
||||
-- output data width of real/img part
|
||||
output_data_width : integer := 32
|
||||
|
||||
);
|
||||
@ -36,112 +48,114 @@ entity fft is
|
||||
|
||||
task_start : in std_logic;
|
||||
task_state : out work.task.State;
|
||||
|
||||
|
||||
signal_read : out std_logic;
|
||||
signal_readdata : in std_logic_vector( 31 downto 0 );
|
||||
|
||||
|
||||
signal_write : out std_logic;
|
||||
signal_writedata : out std_logic_vector( 31 downto 0 )
|
||||
);
|
||||
end entity fft;
|
||||
|
||||
|
||||
architecture rtl of fft is
|
||||
|
||||
|
||||
-- Signale für Task State Machine
|
||||
signal current_task_state : work.task.State;
|
||||
signal next_task_state : work.task.State;
|
||||
signal index : integer range 0 to work.task.STREAM_LEN;
|
||||
--signal index : integer range 0 to 2000;
|
||||
|
||||
component fftmain is
|
||||
-- generic( width : integer := 32
|
||||
--);
|
||||
port(
|
||||
clock: in std_logic;
|
||||
reset: in std_logic;
|
||||
di_en: in std_logic;
|
||||
di_re: in std_logic_vector(input_data_width-1 downto 0);
|
||||
di_im: in std_logic_vector(input_data_width-1 downto 0);
|
||||
do_en: out std_logic;
|
||||
do_re: out std_logic_vector(output_data_width-1 downto 0);
|
||||
do_im: out std_logic_vector(output_data_width-1 downto 0)
|
||||
);
|
||||
end component;
|
||||
-- component des Verilog IP-Cores fuer die FFT
|
||||
component fftmain is
|
||||
port(
|
||||
clock: in std_logic; -- Master Clock
|
||||
reset: in std_logic; -- Active High Asynchronous Reset
|
||||
di_en: in std_logic; -- Input Data Enable
|
||||
di_re: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Real)
|
||||
di_im: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Imag)
|
||||
do_en: out std_logic; -- Output Data Enable
|
||||
do_re: out std_logic_vector(output_data_width-1 downto 0); -- Output Data (Real)
|
||||
do_im: out std_logic_vector(output_data_width-1 downto 0) -- Output Data (Imag)
|
||||
);
|
||||
end component;
|
||||
|
||||
-- Zustände für die Zustandsmaschine zur Berechnung
|
||||
type SigState is (
|
||||
SIG_IDLE,
|
||||
SIG_READ,
|
||||
SIG_FFTMAIN,
|
||||
SIG_FFTMAG,
|
||||
SIG_WRITE
|
||||
);
|
||||
signal current_sig_state : SigState;
|
||||
signal next_sig_state : SigState;
|
||||
-- Signale Input skaliert
|
||||
signal fft_float_input : signed( 31 downto 0 );
|
||||
signal fft_float_scaled_input : signed( 31 downto 0 );
|
||||
|
||||
signal fftmain_start : std_logic;
|
||||
signal fftmain_done : std_logic;
|
||||
signal fftmag_start : std_logic;
|
||||
signal fftmag_done : std_logic;
|
||||
signal fftmain_out_re : std_logic_vector( 31 downto 0 );
|
||||
signal fftmain_out_im : std_logic_vector( 31 downto 0 );
|
||||
|
||||
signal exp : std_logic_vector( 7 downto 0);
|
||||
signal scaled_exp : std_logic_vector( 7 downto 0);
|
||||
signal scaled_readdata : std_logic_vector( 31 downto 0);
|
||||
signal exp_int : integer;
|
||||
signal scaled_data_fixp : std_logic_vector(31 downto 0);
|
||||
-- Signale fuer FFT-IP Core
|
||||
-- fft data input signal
|
||||
signal fft_input_data_enable: std_logic;
|
||||
signal data_in_re : std_logic_vector (input_data_width-1 downto 0);
|
||||
signal data_in_im : std_logic_vector (input_data_width-1 downto 0);
|
||||
-- fft output data
|
||||
signal fft_output_valid : std_logic;
|
||||
signal data_out_re : std_logic_vector (output_data_width-1 downto 0);
|
||||
signal data_out_im : std_logic_vector (output_data_width-1 downto 0);
|
||||
|
||||
signal exp2 : std_logic_vector( 7 downto 0);
|
||||
signal scaled_exp2 : std_logic_vector( 7 downto 0);
|
||||
signal exp_int2 : integer;
|
||||
|
||||
signal magnitude_output : std_logic_vector( 31 downto 0 );
|
||||
signal writedata_float : std_logic_vector( 31 downto 0 );
|
||||
|
||||
type std_logic_vector_array is array (0 to 1023) of std_logic_vector(31 downto 0);
|
||||
signal my_array : std_logic_vector_array;
|
||||
-- Signale fuer Magnitude IP-Core
|
||||
signal fft_mag_calc_valid : std_logic;
|
||||
signal fft_mag_calc_result: std_logic_vector (output_data_width-1 downto 0);
|
||||
|
||||
-- Signale fuer Ergebnis skaliert
|
||||
signal data_out_mag_signed_float : signed (output_data_width-1 downto 0);
|
||||
signal fft_float_scaled : signed( 31 downto 0 );
|
||||
|
||||
-- Signale/Array um Ergebnisse der FFT in der natural order zu speichern
|
||||
|
||||
signal data_memory : work.reg32.RegArray( 0 to 1023 );
|
||||
signal index_reversed : std_logic_vector(9 downto 0);
|
||||
signal index_output_sv : std_logic_vector(9 downto 0);
|
||||
signal index_output : integer range 0 to 1023;
|
||||
|
||||
-- Signal um in den Write FIFO zu schreiben
|
||||
signal wr_fifo : std_logic;
|
||||
|
||||
begin
|
||||
|
||||
exp <= signal_readdata( 30 downto 23 );
|
||||
exp_int <= to_integer(unsigned(exp));
|
||||
scaled_exp <= std_logic_vector(to_unsigned(exp_int - 4, 8));
|
||||
scaled_readdata <= signal_readdata( 31 ) & scaled_exp & signal_readdata( 22 downto 0 );
|
||||
scaled_data_fixp <= to_fixed(scaled_readdata);
|
||||
|
||||
writedata_float <= to_float(magnitude_output);
|
||||
exp2 <= writedata_float( 30 downto 23 );
|
||||
exp_int2 <= to_integer(unsigned(exp2));
|
||||
scaled_exp2 <= std_logic_vector(to_unsigned(exp_int2 + 5, 8));
|
||||
my_array(1023 - index) <= writedata_float( 31 ) & scaled_exp2 & writedata_float( 22 downto 0 );
|
||||
signal_writedata <= my_array(index);
|
||||
|
||||
u_fft : fftmain
|
||||
port map (
|
||||
clock => clk,
|
||||
reset => reset,
|
||||
di_en => fftmain_start,
|
||||
di_re => scaled_data_fixp,
|
||||
di_im => x"00000000",
|
||||
do_en => fftmain_done,
|
||||
do_re => fftmain_out_re,
|
||||
do_im => fftmain_out_im
|
||||
);
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Hier muss der Verilog FFT IP-Core instanziert werden
|
||||
-----------------------------------------------------------------------------------------------
|
||||
|
||||
--u_fft : fftmain
|
||||
-- port map (
|
||||
-- clock => , -- system clock
|
||||
-- reset => , -- Active High Asynchronous Reset
|
||||
-- di_en => , -- Input Data Enable
|
||||
-- di_re => , -- Input Data (Real)
|
||||
-- di_im => , -- Input Data (Imag)
|
||||
-- do_en => , -- Output Data Enable
|
||||
-- do_re => , -- Output Data (Real)
|
||||
-- do_im => -- Output Data (Imag)
|
||||
-- );
|
||||
|
||||
u_fft_mag_calc : entity work.fft_magnitude_calc
|
||||
port map (
|
||||
clk => clk,
|
||||
reset => reset,
|
||||
input_valid => fftmag_start,
|
||||
input_re => fftmain_out_re,
|
||||
input_im => fftmain_out_im,
|
||||
output_valid => fftmag_done,
|
||||
output_magnitude => magnitude_output
|
||||
);
|
||||
fft_output_valid <= '0';
|
||||
data_out_re <= (others => '0');
|
||||
data_out_im <= (others => '0');
|
||||
|
||||
task_state_transitions : process ( current_task_state, task_start, index ) is
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Hier muss der VHDL Magnitue IP-COre instanziert werden
|
||||
-----------------------------------------------------------------------------------------------
|
||||
|
||||
-- u_fft_mag_calc : entity work.fft_magnitude_calc
|
||||
-- port map (
|
||||
-- clk => , -- system clock
|
||||
-- reset => , -- Active High Asynchronous Reset
|
||||
-- input_valid => , -- Input Data Valid
|
||||
-- input_re => , -- Input Realteil in Fixpoint format
|
||||
-- input_im => , -- Input Imaginaerteil in Fixpoint format
|
||||
-- output_valid => , -- Output Data Valid
|
||||
-- output_magnitude => -- Magnitude Output in Fixpoint format
|
||||
-- );
|
||||
|
||||
fft_mag_calc_valid <= '1' when index = 0 else '0';
|
||||
fft_mag_calc_result <= (others => '0');
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Zustandsmaschine fuer die Taskabarbeitung (Uebergangsschaltnetz)
|
||||
-----------------------------------------------------------------------------------------------
|
||||
task_state_transitions : process (all) is
|
||||
begin
|
||||
next_task_state <= current_task_state;
|
||||
case current_task_state is
|
||||
@ -150,7 +164,7 @@ begin
|
||||
next_task_state <= work.task.TASK_RUNNING;
|
||||
end if;
|
||||
when work.task.TASK_RUNNING =>
|
||||
if ( index = work.task.STREAM_LEN - 1 ) then
|
||||
if ( index = 2 ) then
|
||||
next_task_state <= work.task.TASK_DONE;
|
||||
end if;
|
||||
when work.task.TASK_DONE =>
|
||||
@ -160,73 +174,157 @@ begin
|
||||
end case;
|
||||
end process task_state_transitions;
|
||||
|
||||
sig_state_transitions : process (all) is
|
||||
begin
|
||||
next_sig_state <= current_sig_state;
|
||||
case current_sig_state is
|
||||
when SIG_IDLE =>
|
||||
if ( current_task_state = work.task.TASK_RUNNING ) then
|
||||
next_sig_state <= SIG_READ;
|
||||
end if;
|
||||
when SIG_READ =>
|
||||
next_sig_state <= SIG_FFTMAIN;
|
||||
when SIG_FFTMAIN =>
|
||||
if ( fftmain_done = '1') then
|
||||
next_sig_state <= SIG_FFTMAG;
|
||||
end if;
|
||||
when SIG_FFTMAG =>
|
||||
if ( fftmain_done = '0') then
|
||||
next_sig_state <= SIG_WRITE;
|
||||
end if;
|
||||
when SIG_WRITE =>
|
||||
null;
|
||||
end case;
|
||||
end process sig_state_transitions;
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Zustandsmaschine fuer die eigentliche Ablaufsteuerung fuer die FFT (Uebergangsschaltnetz)
|
||||
-----------------------------------------------------------------------------------------------
|
||||
|
||||
sync : process ( clk, reset ) is
|
||||
-- Hier soll Ihre Ablaufsteuerung fuer die FFT stehen
|
||||
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Ausgangsschaltnetz/Zustandsspeicher fuer die Task und FFT Zustandsmaschine
|
||||
-----------------------------------------------------------------------------------------------
|
||||
sync : process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
current_task_state <= work.task.TASK_IDLE;
|
||||
current_sig_state <= SIG_IDLE;
|
||||
index <= 0;
|
||||
signal_read <= '0';
|
||||
fftmain_start <= '0';
|
||||
fftmag_start <= '0';
|
||||
signal_write <= '0';
|
||||
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
current_task_state <= next_task_state;
|
||||
index <= 0;
|
||||
wr_fifo <= '0';
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
current_task_state <= next_task_state;
|
||||
wr_fifo <= '0';
|
||||
case next_task_state is
|
||||
when work.task.TASK_IDLE =>
|
||||
null;
|
||||
when work.task.TASK_RUNNING =>
|
||||
null;
|
||||
when work.task.TASK_DONE =>
|
||||
null;
|
||||
end case;
|
||||
|
||||
current_sig_state <= next_sig_state;
|
||||
case next_sig_state is
|
||||
when SIG_IDLE =>
|
||||
signal_write <= '0';
|
||||
when SIG_READ =>
|
||||
signal_read <= '1';
|
||||
when SIG_FFTMAIN =>
|
||||
fftmain_start <= '1';
|
||||
when SIG_FFTMAG =>
|
||||
signal_read <= '0';
|
||||
fftmain_start <= '0';
|
||||
fftmag_start <= '1';
|
||||
signal_write <= '0';
|
||||
index <= index + 1;
|
||||
when SIG_WRITE =>
|
||||
fftmag_start <= '0';
|
||||
signal_write <= '1';
|
||||
|
||||
when work.task.TASK_IDLE =>
|
||||
index <= 0;
|
||||
when work.task.TASK_RUNNING =>
|
||||
-- Nur damit das Template durchlaueft bei index=0 wird das natural order array mit Nullen gefuellt
|
||||
-- Bei index=1 werden die 1024 Werte in den Ausgangsfifo geschrieben (Task done bei index=2)
|
||||
if ( index_output = work.task.STREAM_LEN - 1 ) then
|
||||
index <= index + 1;
|
||||
end if;
|
||||
if index = 1 then
|
||||
wr_fifo <= '1';
|
||||
end if;
|
||||
when work.task.TASK_DONE => null;
|
||||
end case;
|
||||
end if;
|
||||
end process sync;
|
||||
end process sync;
|
||||
|
||||
|
||||
task_state <= current_task_state;
|
||||
-----------------------------------------------------------------------------------------------
|
||||
--
|
||||
-- Skalierung der Eingangswerte welche vom FIFO gelesen werden
|
||||
-- Dies soll außerhalb eines Prozesses geschehen damit die gelesenen Werte direkt skaliert werden
|
||||
-- und im naechsten Takt schon weiter verarbeitet werden können
|
||||
--
|
||||
-- Erforderliches Scaling:
|
||||
--
|
||||
-- By selecting the amplitude as a power of two (e.g. 2 ** 2) the
|
||||
-- multiplication is a simple addition of the exponents.
|
||||
-- In the following calculation the inputs are scaled from FP in range +-16 to FP in range +-1
|
||||
-- This means an divsion through 16 -> exponent needs an addition of - 4
|
||||
--
|
||||
-- fft_float_input = gelesener Wert vom FIFO (floating point)
|
||||
-- fft_float_scaled_input = soll skalierter Wert vom FIFO seien (floating point)
|
||||
-- (Anm. Der FFT IP-Core braucht als Format Fix-Point -> noch eine weitere Wandlung erforderlich)
|
||||
-----------------------------------------------------------------------------------------------
|
||||
|
||||
fft_float_input <= signed(signal_readdata);
|
||||
|
||||
fft_float_scaled_input <= fft_float_input; -- Der Eingang muss noch entsprechend skaliert werden
|
||||
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
--
|
||||
-- Skalierung der Eingangswerte welche vom FIFO gelesen werden
|
||||
-- Dies soll außerhalb eines Prozesses geschehen damit die gelesenen Werte direkt skaliert werden
|
||||
-- und im naechsten Takt schon weiter verarbeitet werden können
|
||||
--
|
||||
-- Erforderliches Scaling:
|
||||
--
|
||||
-- By selecting the amplitude as a power of two (e.g. 2 ** 2) the
|
||||
-- multiplication is a simple addition of the exponents.
|
||||
-- In the following calculation the inputs are scaled from FP in range +-1 to FP in range +-16
|
||||
-- the first frequency bin (DC-bin) needs a multiplication by two compared to the other frequency bins (the used fft ip-core divides the result of the first frequency bin by N instead of the correct N/2)
|
||||
-- This means an divsion through 16 is required for the first frequency bin (DC Part) -> exponent needs an addition of +4
|
||||
-- This means an divsion through 32 is required for the first frequency bin (DC Part) -> exponent needs an addition of +5
|
||||
--
|
||||
-- data_out_mag_signed_float = in float gewandelter Wert der Magnitude Berechnung
|
||||
-- fft_float_scaled = soll der skalierte float Wert der Magnitude seien
|
||||
-----------------------------------------------------------------------------------------------
|
||||
|
||||
data_out_mag_signed_float <= signed(to_float(fft_mag_calc_result));
|
||||
|
||||
fft_float_scaled <= data_out_mag_signed_float; -- Der Ausgang muss noch entsprechend skaliert werden
|
||||
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Der FFT-IP Core liefert das Ergebnis nicht in der natuerlichen Reihenfolge deswegen muss eine
|
||||
-- Umordnung der Ausgangswerte erfolgen
|
||||
--
|
||||
-- index_output_sv = std_logic_vector des Integer Ausgangsindex
|
||||
-- index_reversed = der reversed Ausgangsindex (wird benoetigt fuer damit man die FFT Ergebnisse in die natuerliche Ordnung bringt
|
||||
--
|
||||
c_index_output_sv:
|
||||
index_output_sv <= std_logic_vector(to_unsigned(index_output, index_reversed'length));
|
||||
c_reversed_index:
|
||||
index_reversed <= index_output_sv(0) & index_output_sv(1) & index_output_sv(2) & index_output_sv(3) & index_output_sv(4) & index_output_sv(5) & index_output_sv(6) & index_output_sv(7) & index_output_sv(8) & index_output_sv(9);
|
||||
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Prozess steuert das hochzaehlen des Ausgang Index
|
||||
-----------------------------------------------------------------------------------------------
|
||||
p_number_output_sample: process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
index_output <= 0;
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
-- Ruecksetz Bedingung für index_output
|
||||
if index_output = 1023 then -- in diese IF-Bedingung ggf. noch den IDLE Zustand Ihrer FFT FSM einbringen
|
||||
index_output <= 0;
|
||||
-- index_output hochzaehlen um in natural order im array zu speichern
|
||||
elsif fft_mag_calc_valid = '1' then
|
||||
index_output <= index_output + 1;
|
||||
-- index_output hochzaehlen um Werte im Ausgangsfifo zu speichern
|
||||
elsif wr_fifo = '1' then
|
||||
index_output <= index_output + 1;
|
||||
end if;
|
||||
end if;
|
||||
end process p_number_output_sample;
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Prozess speichert das skalierte Endergbenis iun der natural order
|
||||
-----------------------------------------------------------------------------------------------
|
||||
p_output2float_memory: process ( clk, reset) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
null;
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
if fft_mag_calc_valid = '1' then
|
||||
data_memory(to_integer(unsigned(index_reversed))) <= std_logic_vector(fft_float_scaled);
|
||||
end if;
|
||||
end if;
|
||||
end process p_output2float_memory;
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Schreiben der berechneten Werte in den FIFO
|
||||
-----------------------------------------------------------------------------------------------
|
||||
p_output_fifo: process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
signal_writedata <= (others => '0');
|
||||
signal_write <= '0';
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
signal_write <= '0';
|
||||
if wr_fifo = '1' then
|
||||
signal_writedata <= data_memory(index_output);
|
||||
signal_write <= '1';
|
||||
end if;
|
||||
end if;
|
||||
end process p_output_fifo;
|
||||
|
||||
|
||||
-- Hier sollen die sonstigen benoetigten Anweisungen stehen
|
||||
task_state <= current_task_state;
|
||||
|
||||
end architecture rtl;
|
||||
|
||||
@ -4,23 +4,7 @@
|
||||
|
||||
int task_add_run( void * task ) {
|
||||
|
||||
add_config * config = (add_config *) task;
|
||||
|
||||
float_word f;
|
||||
|
||||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; i++)
|
||||
{
|
||||
float a;
|
||||
data_channel_read(config->sources[0], (uint32_t *) & a);
|
||||
|
||||
float b;
|
||||
data_channel_read(config->sources[1], (uint32_t *) & b);
|
||||
|
||||
float_word c;
|
||||
c.value = a + b;
|
||||
f.value = c.value;
|
||||
data_channel_write(config->sink, c.word);
|
||||
}
|
||||
// TODO
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -2,96 +2,11 @@
|
||||
#include "system/data_channel.h"
|
||||
#include "system/Complex.h"
|
||||
#include "system/float_word.h"
|
||||
#include <math.h>
|
||||
#include <complex.h>
|
||||
#include <stdio.h>
|
||||
|
||||
void fft_radix4(complex float *x) {
|
||||
int n = DATA_CHANNEL_DEPTH;
|
||||
int stages = log(n) / log(4); // Anzahl der FFT-Stufen
|
||||
int task_fft_run( void * task ) {
|
||||
|
||||
// Bit-Reversal-Rearrangement (Umordnung der Daten für FFT)
|
||||
for (int i = 0; i < n; i++) {
|
||||
int rev = 0, num = i;
|
||||
for (int bit = 0; bit < stages; bit++) {
|
||||
rev = rev * 4 + (num % 4);
|
||||
//printf("i: %d, rev: %d\n", i, rev);
|
||||
num /= 4;
|
||||
}
|
||||
if (i < rev) {
|
||||
complex float temp = x[i];
|
||||
x[i] = x[rev];
|
||||
x[rev] = temp;
|
||||
}
|
||||
}
|
||||
// TODO
|
||||
|
||||
// Radix-4 Butterfly-Berechnung
|
||||
for (int s = 1; s <= stages; s++) {
|
||||
int m = pow(4, s); // Gruppengröße (4^s)
|
||||
int quarter_m = m / 4; // Viertel der Gruppengröße
|
||||
float theta = -2.0f * M_PI / m; // Grundwinkel der Wurzeln der Einheit
|
||||
//printf("Stage: %d, m: %d, theta: %f\n", s, m, theta);
|
||||
|
||||
for (int k = 0; k < n; k += m) { // Iteration über Gruppen
|
||||
for (int j = 0; j < quarter_m; j++) { // Innerhalb der Gruppe
|
||||
// Wurzeln der Einheit
|
||||
complex float w0 = 1.0f; // Wurzel für j = 0
|
||||
complex float w1 = cexpf(I * theta * j); // Wurzel für j = 1
|
||||
complex float w2 = cexpf(I * theta * 2 * j); // Wurzel für j = 2
|
||||
complex float w3 = cexpf(I * theta * 3 * j); // Wurzel für j = 3
|
||||
|
||||
// Lade die Werte aus der Gruppe
|
||||
complex float t0 = x[k + j];
|
||||
complex float t1 = x[k + j + quarter_m] * w1;
|
||||
complex float t2 = x[k + j + 2 * quarter_m] * w2;
|
||||
complex float t3 = x[k + j + 3 * quarter_m] * w3;
|
||||
//printf("w1: %f + %fi, w2: %f + %fi, w3: %f + %fi\n", crealf(w1), cimagf(w1), crealf(w2), cimagf(w2), crealf(w3), cimagf(w3));
|
||||
|
||||
//printf("Before: t0: %f + %fi, t1: %f + %fi, t2: %f + %fi, t3: %f + %fi\n", crealf(t0), cimagf(t0), crealf(t1), cimagf(t1), crealf(t2), cimagf(t2), crealf(t3), cimagf(t3));
|
||||
// Butterfly-Operationen
|
||||
x[k + j] = t0 + t1 + t2 + t3;
|
||||
x[k + j + quarter_m] = t0 - t1 + I * (t3 - t2);
|
||||
x[k + j + 2 * quarter_m] = t0 - t2 + t1 - t3;
|
||||
x[k + j + 3 * quarter_m] = t0 - t1 - I * (t3 - t2);
|
||||
//printf("After: x[%d]: %f + %fi, x[%d]: %f + %fi\n", k + j, crealf(x[k + j]), cimagf(x[k + j]), k + j + quarter_m, crealf(x[k + j + quarter_m]), cimagf(x[k + j + quarter_m]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
int task_fft_run(void *task) {
|
||||
|
||||
fft_config *config = (fft_config *)task;
|
||||
complex float x[DATA_CHANNEL_DEPTH];
|
||||
float c[DATA_CHANNEL_DEPTH];
|
||||
|
||||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
|
||||
float a;
|
||||
data_channel_read(config->base.sources[0], (uint32_t *) &a);
|
||||
x[i] = a;
|
||||
//printf("Input x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i]));
|
||||
}
|
||||
|
||||
fft_radix4(x);
|
||||
|
||||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
|
||||
//printf("Output complex x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i]));
|
||||
c[i] = sqrt(pow(crealf(x[i]), 2) + pow(cimagf(x[i]), 2)); // Betrag
|
||||
if (i == 0)
|
||||
c[i] = c[i] * 1/DATA_CHANNEL_DEPTH; // Sklaierung
|
||||
else
|
||||
c[i] = c[i] * 2/DATA_CHANNEL_DEPTH; // Sklaierung
|
||||
printf("Output Magnitude skaliert c[%d] = %f\n", i, c [i]);
|
||||
|
||||
float_word output;
|
||||
output.value = c[i];
|
||||
|
||||
data_channel_write(config->base.sink, output.word);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -11,6 +11,8 @@ verilog_srcs = \
|
||||
vhdl_srcs = \
|
||||
../../../hardware/system/reg32.vhd \
|
||||
../../../hardware/system/avalon_slave.vhd \
|
||||
../test_utility.vhd \
|
||||
../test_avalon_slave.vhd \
|
||||
../../hardware/test_data_channel.vhd \
|
||||
../../../hardware/system/avalon_slave_transitions.vhd \
|
||||
../../../hardware/system/task.vhd \
|
||||
|
||||
@ -63,7 +63,7 @@ architecture test of test_task_fft is
|
||||
variable writedata_float : float32;
|
||||
variable writedata_real : real;
|
||||
variable expected_real : real;
|
||||
variable abs_err : real := 0.5e-1;
|
||||
variable abs_err : real := 0.6;
|
||||
variable result : data_array( 0 to work.task.STREAM_LEN - 1 );
|
||||
variable result_fft : data_array( 0 to work.task.STREAM_LEN - 1 );
|
||||
file data_file : text;
|
||||
@ -110,11 +110,13 @@ architecture test of test_task_fft is
|
||||
std.textio.write( data_file_fft, "]" & LF );
|
||||
file_close( data_file_fft );
|
||||
|
||||
index := 0;
|
||||
while index < STREAM_LEN loop
|
||||
writedata_float := to_float( result( index ) );
|
||||
writedata_real := to_real( writedata_float );
|
||||
expected_real := work.fft_data.expected( index );
|
||||
assert_near( writedata_real, expected_real, abs_err );
|
||||
index := index + 1;
|
||||
end loop;
|
||||
|
||||
file_open( data_file_fft_bit_reversed, "fft_out_bit_reversed.py", write_mode );
|
||||
|
||||
@ -1 +1,2 @@
|
||||
add wave -position end sim:/test_task_fft/dut/*
|
||||
add wave -position end sim:/test_task_fft/dut/u_fft/*
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user