Compare commits

..

2 Commits

Author SHA1 Message Date
zieglerhe
c90753aa23 New FFT.vhd Template and Fix FFT TB (expected values) 2025-05-30 11:33:35 +02:00
zieglerhe
5efb80253b Fixed FFT Makefile Vorlage 2025-05-29 07:54:55 +02:00
7 changed files with 265 additions and 342 deletions

View File

@ -30,35 +30,7 @@ architecture rtl of add is
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
-- Zustände für die Zustandsmaschine zur Berechnung
type SigState is (
SIG_IDLE,
SIG_READ,
SIG_ADD,
SIG_WRITE
);
signal current_sig_state : SigState;
signal next_sig_state : SigState;
signal signal_add_start : std_logic;
signal signal_add_done : std_logic;
begin
u_float_add : entity work.float_add
port map(
clk => clk,
reset => reset,
start => signal_add_start,
done => signal_add_done,
A => signal_a_readdata,
B => signal_b_readdata,
sum => signal_writedata
);
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
@ -68,7 +40,7 @@ begin
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN) then
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
@ -78,75 +50,24 @@ begin
end case;
end process task_state_transitions;
sig_state_transitions : process (all) is
begin
next_sig_state <= current_sig_state;
case current_sig_state is
when SIG_IDLE =>
if ( current_task_state = work.task.TASK_RUNNING ) then
next_sig_state <= SIG_READ;
end if;
when SIG_READ =>
next_sig_state <= SIG_ADD;
when SIG_ADD =>
if ( signal_add_done = '1') then
next_sig_state <= SIG_WRITE;
end if;
when SIG_WRITE =>
next_sig_state <= SIG_IDLE;
end case;
end process sig_state_transitions;
task_sync : process ( clk, reset ) is
sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
--index <= 0;
index <= 0;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
null;
-- signal_write <= '0';
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
null;
-- signal_write <= '1';
-- signal_writedata <= ( others => '0' );
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
null;
-- signal_write <= '0';
end case;
end if;
end process task_sync;
sync : process (all) is
begin
if ( reset = '1' ) then
current_sig_state <= SIG_IDLE;
index <= 0;
signal_a_read <= '0';
signal_b_read <= '0';
signal_add_start <= '0';
signal_write <= '0';
elsif ( rising_edge( clk ) ) then
current_sig_state <= next_sig_state;
signal_write <= '0';
signal_a_read <= '0';
signal_b_read <= '0';
case next_sig_state is
when SIG_IDLE =>
if (index = 0) then
current_sig_state <= SIG_ADD;
end if;
when SIG_READ =>
signal_a_read <= '1';
signal_b_read <= '1';
when SIG_ADD =>
signal_add_start <= '1';
when SIG_WRITE =>
signal_add_start <= '0';
signal_write <= '1';
index <= index + 1;
index <= 0;
signal_write <= '0';
end case;
end if;
end process sync;

View File

@ -1,13 +1,26 @@
------------------------------------------------------------------------
-- fft
--
-- calculation of FFT magnitude
-- calculation of FFT magnitudes
--
-- Inputs:
-- 32-Bit Floating Point number in range +-16 expected (loaded from FIFO)
--
-- Outputs
-- 32-Bit Floating Point number in range +-16 calculated (stored in FIFO)
--
--
-- Zahlen aus dem Eingangs-FIFO liegen in 32-Bit Floating Point mit Wertebereich +-16 vor
-- Diese Zahlen müssen in Floating Point auf den Wertebereich +-1 gebracht werden (In Floating Point können Sie durch :16 teilen, wenn Sie den Exponenten der Floating Point Zahl um -4 verkleinern, falls dieser ungleich Null ist)
-- Die auf den Wertebereich +-1 gebrachten Floating Point Zahlen mit to_fixed auf eine Fixpointzahl wandeln
-- Diese Fixpointzahl kann dem FFT IP-Core (fftmain) als Eingangswert übergeben werden (Realteil = skalierte auf Fixpoint gewandelte Zahlen; Imaginärteil=0)
-- Die vom FFT IP-Core berechneten werden (Realteil und Imaginärteil) können direkt dem IP-Core für die FFT Magnitude Berechnung (fft_magnitude_calc) übergeben werden (dieser arbeitet auch in Fixpoint im gleichen Wertebereich)
-- Das Ergebnis des FFT Magnitude Berechnung IP-Cores (fft_magnitude_calc) dann auf Floating Point wandeln (to_float)
-- Diese Floating Point Zahlen dann wieder skalieren mit *16 bzw. *32 für den DC-Anteil um auf den ursprünglichen Wertebereich mit +-16 zu kommen (aus dem FFT IP-Core kommt der DC-Anteil / Index 0 um den Faktor 2 zu klein, deswegen dort *32).
-- (In Floating Point können Sie *16 machen, wenn Sie den Exponenten der Floating Point Zahl um +4 vergrößern, *32 wenn dieser um +5 vergrößert wird, falls der Exponent ungleich Null ist)
-- Die Ergebnisse liegen noch in der bit-reveserd order vor (FFT IP-Core arbeitet nicht in-place) und müssen deswegen noch auf die natural order gebracht werden (https://de.mathworks.com/help/dsp/ug/linear-and-bit-reversed-output-order.html)
-- (z.B: ein Array verwenden, um die Werte zu sortieren)
-- Dann das Ergebnis in den Ausgangsfifo speichern
--
-----------------------------------------------------------------------
library ieee;
@ -19,14 +32,13 @@ library work;
use work.task.all;
use work.float.all;
entity fft is
generic (
-- input data width of real/img part
-- input data width of real/img part
input_data_width : integer := 32;
-- output data width of real/img part
-- output data width of real/img part
output_data_width : integer := 32
);
@ -36,112 +48,114 @@ entity fft is
task_start : in std_logic;
task_state : out work.task.State;
signal_read : out std_logic;
signal_readdata : in std_logic_vector( 31 downto 0 );
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity fft;
architecture rtl of fft is
-- Signale für Task State Machine
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
--signal index : integer range 0 to 2000;
component fftmain is
-- generic( width : integer := 32
--);
port(
clock: in std_logic;
reset: in std_logic;
di_en: in std_logic;
di_re: in std_logic_vector(input_data_width-1 downto 0);
di_im: in std_logic_vector(input_data_width-1 downto 0);
do_en: out std_logic;
do_re: out std_logic_vector(output_data_width-1 downto 0);
do_im: out std_logic_vector(output_data_width-1 downto 0)
);
end component;
-- component des Verilog IP-Cores fuer die FFT
component fftmain is
port(
clock: in std_logic; -- Master Clock
reset: in std_logic; -- Active High Asynchronous Reset
di_en: in std_logic; -- Input Data Enable
di_re: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Real)
di_im: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Imag)
do_en: out std_logic; -- Output Data Enable
do_re: out std_logic_vector(output_data_width-1 downto 0); -- Output Data (Real)
do_im: out std_logic_vector(output_data_width-1 downto 0) -- Output Data (Imag)
);
end component;
-- Zustände für die Zustandsmaschine zur Berechnung
type SigState is (
SIG_IDLE,
SIG_READ,
SIG_FFTMAIN,
SIG_FFTMAG,
SIG_WRITE
);
signal current_sig_state : SigState;
signal next_sig_state : SigState;
-- Signale Input skaliert
signal fft_float_input : signed( 31 downto 0 );
signal fft_float_scaled_input : signed( 31 downto 0 );
signal fftmain_start : std_logic;
signal fftmain_done : std_logic;
signal fftmag_start : std_logic;
signal fftmag_done : std_logic;
signal fftmain_out_re : std_logic_vector( 31 downto 0 );
signal fftmain_out_im : std_logic_vector( 31 downto 0 );
signal exp : std_logic_vector( 7 downto 0);
signal scaled_exp : std_logic_vector( 7 downto 0);
signal scaled_readdata : std_logic_vector( 31 downto 0);
signal exp_int : integer;
signal scaled_data_fixp : std_logic_vector(31 downto 0);
-- Signale fuer FFT-IP Core
-- fft data input signal
signal fft_input_data_enable: std_logic;
signal data_in_re : std_logic_vector (input_data_width-1 downto 0);
signal data_in_im : std_logic_vector (input_data_width-1 downto 0);
-- fft output data
signal fft_output_valid : std_logic;
signal data_out_re : std_logic_vector (output_data_width-1 downto 0);
signal data_out_im : std_logic_vector (output_data_width-1 downto 0);
signal exp2 : std_logic_vector( 7 downto 0);
signal scaled_exp2 : std_logic_vector( 7 downto 0);
signal exp_int2 : integer;
signal magnitude_output : std_logic_vector( 31 downto 0 );
signal writedata_float : std_logic_vector( 31 downto 0 );
type std_logic_vector_array is array (0 to 1023) of std_logic_vector(31 downto 0);
signal my_array : std_logic_vector_array;
-- Signale fuer Magnitude IP-Core
signal fft_mag_calc_valid : std_logic;
signal fft_mag_calc_result: std_logic_vector (output_data_width-1 downto 0);
-- Signale fuer Ergebnis skaliert
signal data_out_mag_signed_float : signed (output_data_width-1 downto 0);
signal fft_float_scaled : signed( 31 downto 0 );
-- Signale/Array um Ergebnisse der FFT in der natural order zu speichern
signal data_memory : work.reg32.RegArray( 0 to 1023 );
signal index_reversed : std_logic_vector(9 downto 0);
signal index_output_sv : std_logic_vector(9 downto 0);
signal index_output : integer range 0 to 1023;
-- Signal um in den Write FIFO zu schreiben
signal wr_fifo : std_logic;
begin
exp <= signal_readdata( 30 downto 23 );
exp_int <= to_integer(unsigned(exp));
scaled_exp <= std_logic_vector(to_unsigned(exp_int - 4, 8));
scaled_readdata <= signal_readdata( 31 ) & scaled_exp & signal_readdata( 22 downto 0 );
scaled_data_fixp <= to_fixed(scaled_readdata);
writedata_float <= to_float(magnitude_output);
exp2 <= writedata_float( 30 downto 23 );
exp_int2 <= to_integer(unsigned(exp2));
scaled_exp2 <= std_logic_vector(to_unsigned(exp_int2 + 5, 8));
my_array(1023 - index) <= writedata_float( 31 ) & scaled_exp2 & writedata_float( 22 downto 0 );
signal_writedata <= my_array(index);
u_fft : fftmain
port map (
clock => clk,
reset => reset,
di_en => fftmain_start,
di_re => scaled_data_fixp,
di_im => x"00000000",
do_en => fftmain_done,
do_re => fftmain_out_re,
do_im => fftmain_out_im
);
-----------------------------------------------------------------------------------------------
-- Hier muss der Verilog FFT IP-Core instanziert werden
-----------------------------------------------------------------------------------------------
--u_fft : fftmain
-- port map (
-- clock => , -- system clock
-- reset => , -- Active High Asynchronous Reset
-- di_en => , -- Input Data Enable
-- di_re => , -- Input Data (Real)
-- di_im => , -- Input Data (Imag)
-- do_en => , -- Output Data Enable
-- do_re => , -- Output Data (Real)
-- do_im => -- Output Data (Imag)
-- );
u_fft_mag_calc : entity work.fft_magnitude_calc
port map (
clk => clk,
reset => reset,
input_valid => fftmag_start,
input_re => fftmain_out_re,
input_im => fftmain_out_im,
output_valid => fftmag_done,
output_magnitude => magnitude_output
);
fft_output_valid <= '0';
data_out_re <= (others => '0');
data_out_im <= (others => '0');
task_state_transitions : process ( current_task_state, task_start, index ) is
-----------------------------------------------------------------------------------------------
-- Hier muss der VHDL Magnitue IP-COre instanziert werden
-----------------------------------------------------------------------------------------------
-- u_fft_mag_calc : entity work.fft_magnitude_calc
-- port map (
-- clk => , -- system clock
-- reset => , -- Active High Asynchronous Reset
-- input_valid => , -- Input Data Valid
-- input_re => , -- Input Realteil in Fixpoint format
-- input_im => , -- Input Imaginaerteil in Fixpoint format
-- output_valid => , -- Output Data Valid
-- output_magnitude => -- Magnitude Output in Fixpoint format
-- );
fft_mag_calc_valid <= '1' when index = 0 else '0';
fft_mag_calc_result <= (others => '0');
-----------------------------------------------------------------------------------------------
-- Zustandsmaschine fuer die Taskabarbeitung (Uebergangsschaltnetz)
-----------------------------------------------------------------------------------------------
task_state_transitions : process (all) is
begin
next_task_state <= current_task_state;
case current_task_state is
@ -150,7 +164,7 @@ begin
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
if ( index = 2 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
@ -160,73 +174,157 @@ begin
end case;
end process task_state_transitions;
sig_state_transitions : process (all) is
begin
next_sig_state <= current_sig_state;
case current_sig_state is
when SIG_IDLE =>
if ( current_task_state = work.task.TASK_RUNNING ) then
next_sig_state <= SIG_READ;
end if;
when SIG_READ =>
next_sig_state <= SIG_FFTMAIN;
when SIG_FFTMAIN =>
if ( fftmain_done = '1') then
next_sig_state <= SIG_FFTMAG;
end if;
when SIG_FFTMAG =>
if ( fftmain_done = '0') then
next_sig_state <= SIG_WRITE;
end if;
when SIG_WRITE =>
null;
end case;
end process sig_state_transitions;
-----------------------------------------------------------------------------------------------
-- Zustandsmaschine fuer die eigentliche Ablaufsteuerung fuer die FFT (Uebergangsschaltnetz)
-----------------------------------------------------------------------------------------------
sync : process ( clk, reset ) is
-- Hier soll Ihre Ablaufsteuerung fuer die FFT stehen
-----------------------------------------------------------------------------------------------
-- Ausgangsschaltnetz/Zustandsspeicher fuer die Task und FFT Zustandsmaschine
-----------------------------------------------------------------------------------------------
sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
current_sig_state <= SIG_IDLE;
index <= 0;
signal_read <= '0';
fftmain_start <= '0';
fftmag_start <= '0';
signal_write <= '0';
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
index <= 0;
wr_fifo <= '0';
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
wr_fifo <= '0';
case next_task_state is
when work.task.TASK_IDLE =>
null;
when work.task.TASK_RUNNING =>
null;
when work.task.TASK_DONE =>
null;
end case;
current_sig_state <= next_sig_state;
case next_sig_state is
when SIG_IDLE =>
signal_write <= '0';
when SIG_READ =>
signal_read <= '1';
when SIG_FFTMAIN =>
fftmain_start <= '1';
when SIG_FFTMAG =>
signal_read <= '0';
fftmain_start <= '0';
fftmag_start <= '1';
signal_write <= '0';
index <= index + 1;
when SIG_WRITE =>
fftmag_start <= '0';
signal_write <= '1';
when work.task.TASK_IDLE =>
index <= 0;
when work.task.TASK_RUNNING =>
-- Nur damit das Template durchlaueft bei index=0 wird das natural order array mit Nullen gefuellt
-- Bei index=1 werden die 1024 Werte in den Ausgangsfifo geschrieben (Task done bei index=2)
if ( index_output = work.task.STREAM_LEN - 1 ) then
index <= index + 1;
end if;
if index = 1 then
wr_fifo <= '1';
end if;
when work.task.TASK_DONE => null;
end case;
end if;
end process sync;
end process sync;
task_state <= current_task_state;
-----------------------------------------------------------------------------------------------
--
-- Skalierung der Eingangswerte welche vom FIFO gelesen werden
-- Dies soll außerhalb eines Prozesses geschehen damit die gelesenen Werte direkt skaliert werden
-- und im naechsten Takt schon weiter verarbeitet werden können
--
-- Erforderliches Scaling:
--
-- By selecting the amplitude as a power of two (e.g. 2 ** 2) the
-- multiplication is a simple addition of the exponents.
-- In the following calculation the inputs are scaled from FP in range +-16 to FP in range +-1
-- This means an divsion through 16 -> exponent needs an addition of - 4
--
-- fft_float_input = gelesener Wert vom FIFO (floating point)
-- fft_float_scaled_input = soll skalierter Wert vom FIFO seien (floating point)
-- (Anm. Der FFT IP-Core braucht als Format Fix-Point -> noch eine weitere Wandlung erforderlich)
-----------------------------------------------------------------------------------------------
fft_float_input <= signed(signal_readdata);
fft_float_scaled_input <= fft_float_input; -- Der Eingang muss noch entsprechend skaliert werden
-----------------------------------------------------------------------------------------------
--
-- Skalierung der Eingangswerte welche vom FIFO gelesen werden
-- Dies soll außerhalb eines Prozesses geschehen damit die gelesenen Werte direkt skaliert werden
-- und im naechsten Takt schon weiter verarbeitet werden können
--
-- Erforderliches Scaling:
--
-- By selecting the amplitude as a power of two (e.g. 2 ** 2) the
-- multiplication is a simple addition of the exponents.
-- In the following calculation the inputs are scaled from FP in range +-1 to FP in range +-16
-- the first frequency bin (DC-bin) needs a multiplication by two compared to the other frequency bins (the used fft ip-core divides the result of the first frequency bin by N instead of the correct N/2)
-- This means an divsion through 16 is required for the first frequency bin (DC Part) -> exponent needs an addition of +4
-- This means an divsion through 32 is required for the first frequency bin (DC Part) -> exponent needs an addition of +5
--
-- data_out_mag_signed_float = in float gewandelter Wert der Magnitude Berechnung
-- fft_float_scaled = soll der skalierte float Wert der Magnitude seien
-----------------------------------------------------------------------------------------------
data_out_mag_signed_float <= signed(to_float(fft_mag_calc_result));
fft_float_scaled <= data_out_mag_signed_float; -- Der Ausgang muss noch entsprechend skaliert werden
-----------------------------------------------------------------------------------------------
-- Der FFT-IP Core liefert das Ergebnis nicht in der natuerlichen Reihenfolge deswegen muss eine
-- Umordnung der Ausgangswerte erfolgen
--
-- index_output_sv = std_logic_vector des Integer Ausgangsindex
-- index_reversed = der reversed Ausgangsindex (wird benoetigt fuer damit man die FFT Ergebnisse in die natuerliche Ordnung bringt
--
c_index_output_sv:
index_output_sv <= std_logic_vector(to_unsigned(index_output, index_reversed'length));
c_reversed_index:
index_reversed <= index_output_sv(0) & index_output_sv(1) & index_output_sv(2) & index_output_sv(3) & index_output_sv(4) & index_output_sv(5) & index_output_sv(6) & index_output_sv(7) & index_output_sv(8) & index_output_sv(9);
-----------------------------------------------------------------------------------------------
-- Prozess steuert das hochzaehlen des Ausgang Index
-----------------------------------------------------------------------------------------------
p_number_output_sample: process ( clk, reset ) is
begin
if ( reset = '1' ) then
index_output <= 0;
elsif ( rising_edge( clk ) ) then
-- Ruecksetz Bedingung für index_output
if index_output = 1023 then -- in diese IF-Bedingung ggf. noch den IDLE Zustand Ihrer FFT FSM einbringen
index_output <= 0;
-- index_output hochzaehlen um in natural order im array zu speichern
elsif fft_mag_calc_valid = '1' then
index_output <= index_output + 1;
-- index_output hochzaehlen um Werte im Ausgangsfifo zu speichern
elsif wr_fifo = '1' then
index_output <= index_output + 1;
end if;
end if;
end process p_number_output_sample;
-----------------------------------------------------------------------------------------------
-- Prozess speichert das skalierte Endergbenis iun der natural order
-----------------------------------------------------------------------------------------------
p_output2float_memory: process ( clk, reset) is
begin
if ( reset = '1' ) then
null;
elsif ( rising_edge( clk ) ) then
if fft_mag_calc_valid = '1' then
data_memory(to_integer(unsigned(index_reversed))) <= std_logic_vector(fft_float_scaled);
end if;
end if;
end process p_output2float_memory;
-----------------------------------------------------------------------------------------------
-- Schreiben der berechneten Werte in den FIFO
-----------------------------------------------------------------------------------------------
p_output_fifo: process ( clk, reset ) is
begin
if ( reset = '1' ) then
signal_writedata <= (others => '0');
signal_write <= '0';
elsif ( rising_edge( clk ) ) then
signal_write <= '0';
if wr_fifo = '1' then
signal_writedata <= data_memory(index_output);
signal_write <= '1';
end if;
end if;
end process p_output_fifo;
-- Hier sollen die sonstigen benoetigten Anweisungen stehen
task_state <= current_task_state;
end architecture rtl;

View File

@ -4,23 +4,7 @@
int task_add_run( void * task ) {
add_config * config = (add_config *) task;
float_word f;
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; i++)
{
float a;
data_channel_read(config->sources[0], (uint32_t *) & a);
float b;
data_channel_read(config->sources[1], (uint32_t *) & b);
float_word c;
c.value = a + b;
f.value = c.value;
data_channel_write(config->sink, c.word);
}
// TODO
return 0;
}

View File

@ -2,96 +2,11 @@
#include "system/data_channel.h"
#include "system/Complex.h"
#include "system/float_word.h"
#include <math.h>
#include <complex.h>
#include <stdio.h>
void fft_radix4(complex float *x) {
int n = DATA_CHANNEL_DEPTH;
int stages = log(n) / log(4); // Anzahl der FFT-Stufen
int task_fft_run( void * task ) {
// Bit-Reversal-Rearrangement (Umordnung der Daten für FFT)
for (int i = 0; i < n; i++) {
int rev = 0, num = i;
for (int bit = 0; bit < stages; bit++) {
rev = rev * 4 + (num % 4);
//printf("i: %d, rev: %d\n", i, rev);
num /= 4;
}
if (i < rev) {
complex float temp = x[i];
x[i] = x[rev];
x[rev] = temp;
}
}
// TODO
// Radix-4 Butterfly-Berechnung
for (int s = 1; s <= stages; s++) {
int m = pow(4, s); // Gruppengröße (4^s)
int quarter_m = m / 4; // Viertel der Gruppengröße
float theta = -2.0f * M_PI / m; // Grundwinkel der Wurzeln der Einheit
//printf("Stage: %d, m: %d, theta: %f\n", s, m, theta);
for (int k = 0; k < n; k += m) { // Iteration über Gruppen
for (int j = 0; j < quarter_m; j++) { // Innerhalb der Gruppe
// Wurzeln der Einheit
complex float w0 = 1.0f; // Wurzel für j = 0
complex float w1 = cexpf(I * theta * j); // Wurzel für j = 1
complex float w2 = cexpf(I * theta * 2 * j); // Wurzel für j = 2
complex float w3 = cexpf(I * theta * 3 * j); // Wurzel für j = 3
// Lade die Werte aus der Gruppe
complex float t0 = x[k + j];
complex float t1 = x[k + j + quarter_m] * w1;
complex float t2 = x[k + j + 2 * quarter_m] * w2;
complex float t3 = x[k + j + 3 * quarter_m] * w3;
//printf("w1: %f + %fi, w2: %f + %fi, w3: %f + %fi\n", crealf(w1), cimagf(w1), crealf(w2), cimagf(w2), crealf(w3), cimagf(w3));
//printf("Before: t0: %f + %fi, t1: %f + %fi, t2: %f + %fi, t3: %f + %fi\n", crealf(t0), cimagf(t0), crealf(t1), cimagf(t1), crealf(t2), cimagf(t2), crealf(t3), cimagf(t3));
// Butterfly-Operationen
x[k + j] = t0 + t1 + t2 + t3;
x[k + j + quarter_m] = t0 - t1 + I * (t3 - t2);
x[k + j + 2 * quarter_m] = t0 - t2 + t1 - t3;
x[k + j + 3 * quarter_m] = t0 - t1 - I * (t3 - t2);
//printf("After: x[%d]: %f + %fi, x[%d]: %f + %fi\n", k + j, crealf(x[k + j]), cimagf(x[k + j]), k + j + quarter_m, crealf(x[k + j + quarter_m]), cimagf(x[k + j + quarter_m]));
}
}
}
}
int task_fft_run(void *task) {
fft_config *config = (fft_config *)task;
complex float x[DATA_CHANNEL_DEPTH];
float c[DATA_CHANNEL_DEPTH];
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
float a;
data_channel_read(config->base.sources[0], (uint32_t *) &a);
x[i] = a;
//printf("Input x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i]));
}
fft_radix4(x);
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
//printf("Output complex x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i]));
c[i] = sqrt(pow(crealf(x[i]), 2) + pow(cimagf(x[i]), 2)); // Betrag
if (i == 0)
c[i] = c[i] * 1/DATA_CHANNEL_DEPTH; // Sklaierung
else
c[i] = c[i] * 2/DATA_CHANNEL_DEPTH; // Sklaierung
printf("Output Magnitude skaliert c[%d] = %f\n", i, c [i]);
float_word output;
output.value = c[i];
data_channel_write(config->base.sink, output.word);
}
return 0;
}

View File

@ -11,6 +11,8 @@ verilog_srcs = \
vhdl_srcs = \
../../../hardware/system/reg32.vhd \
../../../hardware/system/avalon_slave.vhd \
../test_utility.vhd \
../test_avalon_slave.vhd \
../../hardware/test_data_channel.vhd \
../../../hardware/system/avalon_slave_transitions.vhd \
../../../hardware/system/task.vhd \

View File

@ -63,7 +63,7 @@ architecture test of test_task_fft is
variable writedata_float : float32;
variable writedata_real : real;
variable expected_real : real;
variable abs_err : real := 0.5e-1;
variable abs_err : real := 0.6;
variable result : data_array( 0 to work.task.STREAM_LEN - 1 );
variable result_fft : data_array( 0 to work.task.STREAM_LEN - 1 );
file data_file : text;
@ -110,11 +110,13 @@ architecture test of test_task_fft is
std.textio.write( data_file_fft, "]" & LF );
file_close( data_file_fft );
index := 0;
while index < STREAM_LEN loop
writedata_float := to_float( result( index ) );
writedata_real := to_real( writedata_float );
expected_real := work.fft_data.expected( index );
assert_near( writedata_real, expected_real, abs_err );
index := index + 1;
end loop;
file_open( data_file_fft_bit_reversed, "fft_out_bit_reversed.py", write_mode );

View File

@ -1 +1,2 @@
add wave -position end sim:/test_task_fft/dut/*
add wave -position end sim:/test_task_fft/dut/u_fft/*