|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- import torch
- import torch.distributed as dist
- import diffdist.functional as distops
-
-
- def get_similarity_matrix(outputs, chunk=2, multi_gpu=False):
- '''
- Compute similarity matrix
- - outputs: (B', d) tensor for B' = B * chunk
- - sim_matrix: (B', B') tensor
- '''
-
- if multi_gpu:
- outputs_gathered = []
- for out in outputs.chunk(chunk):
- gather_t = [torch.empty_like(out) for _ in range(dist.get_world_size())]
- gather_t = torch.cat(distops.all_gather(gather_t, out))
- outputs_gathered.append(gather_t)
- outputs = torch.cat(outputs_gathered)
-
- sim_matrix = torch.mm(outputs, outputs.t()) # (B', d), (d, B') -> (B', B')
-
- return sim_matrix
-
-
- def NT_xent(sim_matrix, temperature=0.5, chunk=2, eps=1e-8):
- '''
- Compute NT_xent loss
- - sim_matrix: (B', B') tensor for B' = B * chunk (first 2B are pos samples)
- '''
-
- device = sim_matrix.device
-
- B = sim_matrix.size(0) // chunk # B = B' / chunk
-
- eye = torch.eye(B * chunk).to(device) # (B', B')
- sim_matrix = torch.exp(sim_matrix / temperature) * (1 - eye) # remove diagonal
-
- denom = torch.sum(sim_matrix, dim=1, keepdim=True)
- sim_matrix = -torch.log(sim_matrix / (denom + eps) + eps) # loss matrix
-
- loss = torch.sum(sim_matrix[:B, B:].diag() + sim_matrix[B:, :B].diag()) / (2 * B)
-
- return loss
-
-
- def Supervised_NT_xent(sim_matrix, labels, temperature=0.5, chunk=2, eps=1e-8, multi_gpu=False):
- '''
- Compute NT_xent loss
- - sim_matrix: (B', B') tensor for B' = B * chunk (first 2B are pos samples)
- '''
-
- device = sim_matrix.device
-
- if multi_gpu:
- gather_t = [torch.empty_like(labels) for _ in range(dist.get_world_size())]
- labels = torch.cat(distops.all_gather(gather_t, labels))
- labels = labels.repeat(2)
-
- logits_max, _ = torch.max(sim_matrix, dim=1, keepdim=True)
- sim_matrix = sim_matrix - logits_max.detach()
-
- B = sim_matrix.size(0) // chunk # B = B' / chunk
-
- eye = torch.eye(B * chunk).to(device) # (B', B')
- sim_matrix = torch.exp(sim_matrix / temperature) * (1 - eye) # remove diagonal
-
- denom = torch.sum(sim_matrix, dim=1, keepdim=True)
- sim_matrix = -torch.log(sim_matrix / (denom + eps) + eps) # loss matrix
-
- labels = labels.contiguous().view(-1, 1)
- Mask = torch.eq(labels, labels.t()).float().to(device)
- #Mask = eye * torch.stack([labels == labels[i] for i in range(labels.size(0))]).float().to(device)
- Mask = Mask / (Mask.sum(dim=1, keepdim=True) + eps)
-
- loss = torch.sum(Mask * sim_matrix) / (2 * B)
-
- return loss
-
|