In Masterarbeit:"Anomalie-Detektion in Zellbildern zur Anwendung der Leukämieerkennung" verwendete Methode des 3. Platzes der ISBI2019.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Artur Feoktistov c7a6997e9f init 2 years ago
.ipynb_checkpoints init 2 years ago
README.md init 2 years ago
dataset.py init 2 years ago
main_manual.py init 2 years ago
main_manual_abl_layerlr.py init 2 years ago
main_manual_abl_testrot.py init 2 years ago
model.py init 2 years ago
plot.py init 2 years ago
run.ipynb init 2 years ago
submission.py init 2 years ago
utils.py init 2 years ago

README.md

C-NMC Challenge

This is the code release for the paper:

Prellberg J., Kramer O. (2019) Acute Lymphoblastic Leukemia Classification from Microscopic Images Using Convolutional Neural Networks. In: Gupta A., Gupta R. (eds) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. Lecture Notes in Bioengineering. Springer, Singapore

Usage

Use the script main_manual.py to train the model on the dataset. The expected training data layout is described below.

Use the script submission.py to apply the trained model to the test data.

Data Layout

The training data during the challenge was released in multiple steps which is why the data layout is a little peculiar.

data/fold_0/all/*.bmp
data/fold_0/hem/*.bmp
data/fold_1/...
data/fold_2/...
data/phase2/*.bmp
data/phase3/*.bmp
data/phase2.csv

The fold_0 to fold_2 folders contain the training images with two subdirectories for the two classes each. The directories phase2 and phase3 are the preliminary test-set and test-set respectively and contain images numbered starting from 1.bmp. The labels for the preliminary test-set are specified in phase2.csv which looks as follows:

Patient_ID,new_names,labels
UID_57_29_1_all.bmp,1.bmp,1
UID_57_22_2_all.bmp,2.bmp,1
UID_57_31_3_all.bmp,3.bmp,1
UID_H49_35_1_hem.bmp,4.bmp,0