|
|
@@ -1,9 +1,18 @@ |
|
|
|
\setlength{\imagewidth}{6cm} |
|
|
|
|
|
|
|
% ============================================================================================ |
|
|
|
\section{Lineare OPV-Schaltungen, Gegengekoppelte Strukturen} |
|
|
|
% ============================================================================================ |
|
|
|
|
|
|
|
\begin{sectionbox} |
|
|
|
|
|
|
|
% OPV Modelle |
|
|
|
% ---------------------------------------------------------------------- |
|
|
|
\subsection{Allgemines Modell} |
|
|
|
\begin{center} |
|
|
|
\includegraphics[width = 0.5\columnwidth]{img_02_00_modell_opv} |
|
|
|
\end{center} |
|
|
|
|
|
|
|
% OPV Formeln |
|
|
|
% ---------------------------------------------------------------------- |
|
|
|
\subsection{Operationsverstärker} |
|
|
@@ -28,23 +37,27 @@ |
|
|
|
% ---------------------------------------------------------------------- |
|
|
|
\subsection{Standardstruktur} |
|
|
|
|
|
|
|
\begin{center} |
|
|
|
\includegraphics[width = 0.5\columnwidth]{img_02_01_Standardstruktur} |
|
|
|
\end{center} |
|
|
|
\pbox{5cm}{\includegraphics[width = 5cm - 1cm]{img_02_01_Standardstruktur}} |
|
|
|
\parbox{\textwidth - 5cm + 1cm}{ |
|
|
|
% Rückkopplungsfaktor % |
|
|
|
\begin{bluebox} |
|
|
|
$\underline{k} = \frac{\underline{u}_k}{\underline{u}_2}\vert_{u_1 = 0} = \frac{-\underline{u}_{id}}{\underline{u}_2}\vert_{u_1 = 0}$ |
|
|
|
\end{bluebox} |
|
|
|
|
|
|
|
% Schleifenverstärkung % |
|
|
|
% Schleifenverstärkung % |
|
|
|
Schleifenverstärkung: $\underline{g} = \underline{V}_{ud} \cdot \underline{k}$ |
|
|
|
|
|
|
|
% Ausgangsspannung % |
|
|
|
$\underline{u}_2 = \underline{a}_V^+ \cdot \underline{u}_1^+ + \underline{a}_V^- \cdot \underline{u}_1^-$ |
|
|
|
$\underline{u}_2 = \underline{a}_V^+ \cdot \underline{u}_1^+ + \underline{a}_V^- \cdot \underline{u}_1^-$ |
|
|
|
|
|
|
|
% Spannungsverstärkung % |
|
|
|
\begin{emphbox} |
|
|
|
$\underline{a}_V^+ = \frac{\underline{V}_{ud}}{1+\underline{k}\cdot\underline{V}_{ud}}$ \quad \quad\ |
|
|
|
$\underline{a}_V^- = -\frac{\underline{V}_{ud}\cdot(1-\underline{k})}{1+\underline{k}\cdot\underline{V}_{ud}}$\newline |
|
|
|
$\underline{a}_V^+ = \frac{\underline{V}_{ud}}{1+\underline{k}\cdot\underline{V}_{ud}}$ \newline |
|
|
|
$\underline{a}_V^- = -\frac{\underline{V}_{ud}\cdot(1-\underline{k})}{1+\underline{k}\cdot\underline{V}_{ud}}$\newline |
|
|
|
\end{emphbox} |
|
|
|
} |
|
|
|
|
|
|
|
\subsubsection{Betriebsmodi} |
|
|
|
\subsubsection{Betriebsmodi} |
|
|
|
|
|
|
|
% Nichtinvertierender Betrieb % |
|
|
|
\underline{Nichtinvertierender Betrieb:} |
|
|
@@ -98,65 +111,169 @@ |
|
|
|
\begin{emphbox} |
|
|
|
$f_g \approx \frac{GBW}{1/|\underline{k}(f_g)|}$ |
|
|
|
\end{emphbox} |
|
|
|
|
|
|
|
\end{sectionbox} |
|
|
|
\begin{sectionbox} |
|
|
|
|
|
|
|
% Standard-Rückkopplungsstruktur |
|
|
|
% ---------------------------------------------------------------------- |
|
|
|
\subsection{Stabilität von gegengekoppelten OPV-Schaltungen} |
|
|
|
$\varphi_R = \varphi(\underline{g}(f_D)) - (-180\degree)$ |
|
|
|
\begin{bluebox} |
|
|
|
\item Bei negativer Schleifenverstärkung (= Mitkopplung): $\underline{g} < 1$ |
|
|
|
\item Robust stabile Schaltung: $\varphi_R > 45 \degree$ |
|
|
|
\end{bluebox} |
|
|
|
|
|
|
|
% Testschaltung zur Ermittlung der Schleifenverstärkung |
|
|
|
% ---------------------------------------------------------------------- |
|
|
|
\subsection{Testschaltung zur Ermittlung der Schleifenverstärkung} |
|
|
|
\pbox{\imagewidth}{\includegraphics[width = \imagewidth - 1cm]{img_02_12_testschaltung_schleifenverstaerkung}} |
|
|
|
\parbox{\textwidth - \imagewidth}{ |
|
|
|
$\underline{g} = - \frac{\underline{v}(g\_out)}{\underline{v}(g\_in)}$ |
|
|
|
} |
|
|
|
|
|
|
|
\begin{sectionbox} |
|
|
|
% Kompensation der Ausgangs-Offset-Spannung |
|
|
|
% ---------------------------------------------------------------------- |
|
|
|
\subsection{Kompensation der Ausgangs-Offset-Spannung} |
|
|
|
\pbox{5cm}{\includegraphics[width = 4cm]{img_02_13_ruhestromkompensation}} |
|
|
|
\pbox{6cm}{\includegraphics[width = 5cm]{img_02_14_uio_kompensation}} |
|
|
|
\newline |
|
|
|
\parbox{4cm}{\begin{emphbox} $R^+ = R^-$ \end{emphbox}} \quad\quad\quad |
|
|
|
\parbox{4cm}{\begin{emphbox} $U_{ID} = U_{IO}$ \end{emphbox}} |
|
|
|
|
|
|
|
% Standard-Rückkopplungsstruktur |
|
|
|
% ---------------------------------------------------------------------- |
|
|
|
\subsection{Stabilität von gegengekoppelten OPV-Schaltungen} |
|
|
|
|
|
|
|
\end{sectionbox} |
|
|
|
% Gegenkopplung und Mitkopplung |
|
|
|
% ---------------------------------------------------------------------- |
|
|
|
\subsection{Kompensation der Ausgangs-Offset-Spannung} |
|
|
|
\pbox{\imagewidth}{\includegraphics[width = \imagewidth - 1cm]{img_02_13_mitkopplung}} |
|
|
|
\parbox{\textwidth - \imagewidth}{ |
|
|
|
% Rückkopplungsfaktor % |
|
|
|
\begin{bluebox} |
|
|
|
$\underline{k} |
|
|
|
= \frac{-\underline{u}_{id}\vert_{u_1 = 0}}{\underline{u}_2} \newline |
|
|
|
= \frac{\underline{u}(-)-\underline{u}(+)}{\underline{u}_2}\vert_{u_1 = 0} \newline |
|
|
|
= \underline{k}^{(-)} - \underline{k}^{(+)}$ |
|
|
|
\end{bluebox} |
|
|
|
|
|
|
|
\begin{emphbox} |
|
|
|
$\underline{k} = \frac{\underline{Z}_1}{\underline{Z}_1 + \underline{Z}_2} - \frac{\underline{Z}_3}{\underline{Z}_3 + \underline{Z}_4}$ |
|
|
|
\end{emphbox} |
|
|
|
} |
|
|
|
|
|
|
|
\end{sectionbox} |
|
|
|
\newpage |
|
|
|
\begin{sectionbox} |
|
|
|
|
|
|
|
% Standard lineare OPV-Schaltungen TODO |
|
|
|
% ---------------------------------------------------------------------- |
|
|
|
% Standard lineare OPV-Schaltungen |
|
|
|
% ---------------------------------------------------------------------- |
|
|
|
\subsection{Standard Linearverstärker mit OPV} |
|
|
|
\subsubsection{Invertierender Standard Verstärker} |
|
|
|
\pbox{4cm}{\includegraphics[width = 3cm]{img_02_02_invertierender_verstaerker}} |
|
|
|
\parbox{3.5cm}{\begin{emphbox} $f_g \approx \frac{GBW}{1/|\underline{k}(f_g)|}$ \end{emphbox} } |
|
|
|
\pbox{\imagewidth}{\includegraphics[width = \imagewidth - 1cm]{img_02_02_invertierender_verstaerker}} |
|
|
|
\parbox{\textwidth - \imagewidth}{ |
|
|
|
$\underline{a}_V = - \frac{R_2}{R_1}$ \newline |
|
|
|
$\underline{z}_{in} = R_1$ \newline |
|
|
|
$\underline{z}_a = (R_1+R_2)||\frac{\underline{z}_{a,OPV}}{1+\underline{k} \cdot \underline{V}_{ud}}$ |
|
|
|
} |
|
|
|
|
|
|
|
\subsubsection{Nichtinvertierender Standard Verstärker} |
|
|
|
\pbox{4cm}{\includegraphics[width = 3cm]{img_02_03_nichtinvertierender_verstaerker}} |
|
|
|
\parbox{3.5cm}{} |
|
|
|
\pbox{\imagewidth}{\includegraphics[width = \imagewidth - 1cm]{img_02_03_nichtinvertierender_verstaerker}} |
|
|
|
\parbox{\textwidth - \imagewidth}{ |
|
|
|
$\underline{a}_V = 1 + \frac{R_2}{R_1}$ \newline |
|
|
|
$\underline{z}_{in} = \underline{z}_{id} \cdot (1+\underline{k} \cdot \underline{V}_{ud})$ \newline |
|
|
|
$\underline{z}_a = (R_1+R_2)||\frac{\underline{z}_{a,OPV}}{1+\underline{k} \cdot \underline{V}_{ud}}$ |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
\subsubsection{Spannungsfolger, Impedanzwandler} |
|
|
|
\pbox{4cm}{\includegraphics[width = 3cm]{img_02_04_impedanzwandler}} |
|
|
|
\parbox{3.5cm}{} |
|
|
|
\pbox{\imagewidth}{\includegraphics[width = {\imagewidth - 2cm}]{img_02_04_impedanzwandler}} |
|
|
|
\parbox{\textwidth - \imagewidth}{ |
|
|
|
$\underline{a}_V = 1$ \newline |
|
|
|
$\underline{z}_{in} = \underline{z}_{id} \cdot (1 + 1 \cdot \underline{V}_{ud})$ \newline |
|
|
|
$\underline{z}_a = \frac{\underline{z}_{a,OPV}}{1 + 1 \cdot \underline{V}_{ud}}$ |
|
|
|
} |
|
|
|
|
|
|
|
\subsubsection{Integrierer} |
|
|
|
\pbox{4cm}{\includegraphics[width = 3cm]{img_02_05_integrierer}} |
|
|
|
\parbox{3.5cm}{} |
|
|
|
\pbox{\imagewidth}{\includegraphics[width = \imagewidth - 1cm]{img_02_05_integrierer}} |
|
|
|
\parbox{\textwidth - \imagewidth + 1cm}{ |
|
|
|
$U_2(t)= -\frac{1}{R \cdot C} \cdot \int_0^t U_1(t) \cdot dt + U_2(0)$ \newline |
|
|
|
$\frac{U_2(s)}{U_1(s)} = - \frac{1}{s \cdot R \cdot C}$ \newline |
|
|
|
$\underline{a}_V = - \frac{1}{j\omega \cdot R \cdot C}$ \newline |
|
|
|
$\underline{z}_{in} = R$ \newline |
|
|
|
$\underline{z}_a = (\frac{1}{j\omega \cdot C}+R)||\frac{\underline{z}_{a,OPV}}{1+\underline{k} \cdot \underline{V}_{ud}}$ |
|
|
|
} |
|
|
|
|
|
|
|
\subsubsection{Differentiator (Differenzierer)} |
|
|
|
\pbox{4cm}{\includegraphics[width = 3cm]{img_02_06_differenzierer}} |
|
|
|
\parbox{3.5cm}{} |
|
|
|
\pbox{\imagewidth}{\includegraphics[width = \imagewidth - 1cm]{img_02_06_differenzierer}} |
|
|
|
\parbox{\textwidth - \imagewidth}{ |
|
|
|
$U_2(t) \approx - R_2 \cdot C_1 \cdot \frac{U_1(t)}{dt}$ \newline |
|
|
|
$\frac{U_2(s)}{U_1(s)} = - s \cdot R_2 \cdot C_1$ \newline |
|
|
|
$\underline{a}_V \approx - j\omega \cdot R_2 \cdot C_1$ \newline |
|
|
|
$\underline{z}_{in} \approx \frac{1}{j\omega \cdot C_1}$ |
|
|
|
} |
|
|
|
\begin{emphbox} |
|
|
|
für $\varphi_R = 45\degree$ : $R_1 = \frac{1}{f_D\cdot 2 \pi \cdot C_1} = \frac{1}{2\pi \cdot C_1 \cdot \sqrt{\frac{GBW}{2\pi \cdot R_2 \cdot C_1}}}$ |
|
|
|
\end{emphbox} |
|
|
|
|
|
|
|
\subsubsection{Summierer (Invertierend)} |
|
|
|
\pbox{4cm}{\includegraphics[width = 3cm]{img_02_07_summierer}} |
|
|
|
\parbox{3.5cm}{} |
|
|
|
\end{sectionbox} |
|
|
|
%Force column break |
|
|
|
\begin{sectionbox} |
|
|
|
|
|
|
|
\subsubsection{Differenzverstärker (aktiver Subtrahierer, einfache Struktur)} |
|
|
|
\pbox{4cm}{\includegraphics[width = 3cm]{img_02_08_differenzverstaerker}} |
|
|
|
\parbox{3.5cm}{} |
|
|
|
|
|
|
|
\subsubsection{Summierer (Invertierend)} |
|
|
|
\pbox{\imagewidth}{\includegraphics[width = \imagewidth - 1cm]{img_02_07_summierer}} |
|
|
|
\parbox{\textwidth - \imagewidth}{ |
|
|
|
$\underline{a}_{V,i} = \frac{R_2}{R_1}$ \newline |
|
|
|
$\underline{z}_{in,i} = R_1$ \newline |
|
|
|
$\underline{z}_a = (R_2+\frac{R_1}{n})||\frac{\underline{z}_{a,OPV}}{1 + \underline{k} \cdot \underline{V}_{ud}}$ |
|
|
|
} |
|
|
|
|
|
|
|
\subsubsection{Instrumentenverstärker (verbesserter Differenzverstärker)} |
|
|
|
\pbox{4cm}{\includegraphics[width = 3cm]{img_02_09_instrumentenverstaerker}} |
|
|
|
\parbox{3.5cm}{} |
|
|
|
\subsubsection{Differenzverstärker (aktiver Subtrahierer, einfache Struktur)} |
|
|
|
\pbox{5cm}{\includegraphics[width = 5cm - 1cm]{img_02_08_differenzverstaerker}} |
|
|
|
\parbox{\textwidth - 5cm + 1cm}{ |
|
|
|
$\underline{u}_2 = -\frac{R_2}{R_1}\cdot \underline{u}_{in2}$ \newline $+ \frac{R_1+R_2}{R1}\cdot\frac{R_4}{R_3+R_4}\cdot\underline{u}_{in1}$ \newline |
|
|
|
$\underline{z}_{in1} = R_3 + R_4$ \newline |
|
|
|
$\underline{z}_{in2} = R_1 \big \vert _{\underline{u}_{in1}=0} = R_1$ \newline |
|
|
|
\begin{emphbox} |
|
|
|
Für $R_3=R_1$ und $R_4=R_2$ : \newline |
|
|
|
$\underline{u}_2 = \frac{R_2}{R_1}\cdot(\underline{u}_{in1} - \underline{u}_{in2})$ |
|
|
|
\end{emphbox} |
|
|
|
} |
|
|
|
|
|
|
|
\subsubsection{Instrumentenverstärker (verbesserter Differenzverstärker)} |
|
|
|
\pbox{\imagewidth}{\includegraphics[width = \imagewidth - 1cm]{img_02_09_instrumentenverstaerker}} |
|
|
|
\parbox{\textwidth - \imagewidth + 1cm}{ |
|
|
|
$\underline{u}_{out1} = (1+\frac{R_2}{R_1}) \cdot \underline{u}_{in1} - \frac{R_2}{R_1} \cdot \underline{u}_{in2}$ \newline |
|
|
|
$\underline{u}_{out2} = (1+\frac{R_2}{R_1}) \cdot \underline{u}_{in2} - \frac{R_2}{R_1} \cdot \underline{u}_{in1}$ \newline |
|
|
|
$\underline{u}_2 = \frac{R_4}{R_3} \cdot (1+2\cdot \frac{R_2}{R_1})\cdot (\underline{u}_{in1} - \underline{u}_{in2})$ \newline \newline |
|
|
|
$\underline{z}_{in1,2} \to \infty$ |
|
|
|
} |
|
|
|
|
|
|
|
\subsubsection{Spannungsgesteuerte Stromquelle ($G_m$)} |
|
|
|
\pbox{\imagewidth}{\includegraphics[width = \imagewidth - 2cm]{img_02_10_stromquelle}} |
|
|
|
\parbox{\textwidth - \imagewidth}{ |
|
|
|
$\underline{u}_1 = \underline{u}_2 \cdot (1-\frac{R_4 \cdot R_1}{R_3 \cdot R_2}+\frac{R_1}{R_L})$ \newline |
|
|
|
\begin{emphbox} |
|
|
|
Für $\frac{R_4}{R_3} = \frac{R_2}{R_1}$: \quad\ |
|
|
|
$i_2 = \frac{1}{R_1} \cdot u_1$ |
|
|
|
\end{emphbox} |
|
|
|
} |
|
|
|
|
|
|
|
\end{sectionbox} |
|
|
|
%Force column break |
|
|
|
\begin{sectionbox} |
|
|
|
\subsubsection{Negativ-Impedanz-Konverter (NIC)} |
|
|
|
\pbox{0.7\imagewidth}{\includegraphics[width = 0.7\imagewidth - 1cm]{img_02_11_NIC}} |
|
|
|
\parbox{\textwidth - 0.7\imagewidth}{ |
|
|
|
$\underline{z}_1 = -\underline{Z} \cdot \frac{R_1}{R_2}$ |
|
|
|
\begin{emphbox} |
|
|
|
Für $R_1 = R_2$: \quad\ |
|
|
|
$\underline{z}_1 = -\underline{Z}$ |
|
|
|
\end{emphbox} |
|
|
|
} |
|
|
|
|
|
|
|
\subsubsection{Spannungsgesteuerte Stromquelle ($G_m$)} |
|
|
|
\pbox{4cm}{\includegraphics[width = 3cm]{img_02_10_stromquelle}} |
|
|
|
\parbox{3.5cm}{} |
|
|
|
\end{sectionbox} |
|
|
|
|
|
|
|
\subsubsection{Negativ-Impedanz-Konverter (NIC)} |
|
|
|
\pbox{4cm}{\includegraphics[width = 3cm]{img_02_11_NIC}} |
|
|
|
\parbox{3.5cm}{} |
|
|
|
\begin{sectionbox} |
|
|
|
|
|
|
|
\end{sectionbox} |
|
|
|
% Filter |
|
|
|
% ---------------------------------------------------------------------- |
|
|
|
\subsection{Filter-Grundschaltungen mit OPV} |
|
|
|
%TODO |
|
|
|
\end{sectionbox} |