hilfsfunktionen und matrix fix
This commit is contained in:
parent
3f539cbe1d
commit
59cdcafa94
81
imageInput.c
81
imageInput.c
@ -8,6 +8,48 @@
|
|||||||
|
|
||||||
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
||||||
|
|
||||||
|
static int read_header(FILE *file, unsigned short *count, unsigned short *width, unsigned short *height)
|
||||||
|
{
|
||||||
|
size_t headerLEN = strlen(FILE_HEADER_STRING);
|
||||||
|
char buffer[BUFFER_SIZE];
|
||||||
|
|
||||||
|
if (headerLEN >= BUFFER_SIZE)
|
||||||
|
{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (fread(buffer, 1, headerLEN, file) != headerLEN)
|
||||||
|
{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
buffer[headerLEN] = '\0';
|
||||||
|
|
||||||
|
if (strcmp(buffer, FILE_HEADER_STRING) != 0)
|
||||||
|
{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (fread(count, sizeof(unsigned short), 1, file) != 1 || fread(width, sizeof(unsigned short), 1, file) != 1 ||
|
||||||
|
fread(height, sizeof(unsigned short), 1, file) != 1)
|
||||||
|
{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int read_single_image(FILE *file, GrayScaleImage *image)
|
||||||
|
{
|
||||||
|
unsigned int number_of_pixel = image->width * image->height;
|
||||||
|
|
||||||
|
if (fread(image->buffer, sizeof(GrayScalePixelType), number_of_pixel, file) != number_of_pixel) // fehler beim lesen
|
||||||
|
{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
||||||
GrayScaleImageSeries *readImages(const char *path)
|
GrayScaleImageSeries *readImages(const char *path)
|
||||||
{
|
{
|
||||||
@ -17,26 +59,9 @@ GrayScaleImageSeries *readImages(const char *path)
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
const size_t headerLEN = strlen(FILE_HEADER_STRING);
|
unsigned short count, width, height;
|
||||||
char buffer[BUFFER_SIZE];
|
|
||||||
|
|
||||||
if (fread(buffer, 1, headerLEN, file) != headerLEN)
|
if (!read_header(file, &count, &width, &height))
|
||||||
{
|
|
||||||
fclose(file);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
buffer[headerLEN] = '\0';
|
|
||||||
|
|
||||||
if (strcmp(buffer, FILE_HEADER_STRING) != 0)
|
|
||||||
{
|
|
||||||
fclose(file);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
unsigned short count, height, width;
|
|
||||||
|
|
||||||
if (fread(&count, sizeof(unsigned short), 1, file) != 1 || fread(&height, sizeof(unsigned short), 1, file) != 1 ||
|
|
||||||
fread(&width, sizeof(unsigned short), 1, file) != 1)
|
|
||||||
{
|
{
|
||||||
fclose(file);
|
fclose(file);
|
||||||
return 0;
|
return 0;
|
||||||
@ -65,7 +90,7 @@ GrayScaleImageSeries *readImages(const char *path)
|
|||||||
{
|
{
|
||||||
series->images[i].width = width;
|
series->images[i].width = width;
|
||||||
series->images[i].height = height;
|
series->images[i].height = height;
|
||||||
series->images[i].buffer = malloc(width * height);
|
series->images[i].buffer = malloc(width * height * sizeof(GrayScalePixelType));
|
||||||
|
|
||||||
if (!series->images[i].buffer)
|
if (!series->images[i].buffer)
|
||||||
{
|
{
|
||||||
@ -73,13 +98,8 @@ GrayScaleImageSeries *readImages(const char *path)
|
|||||||
fclose(file);
|
fclose(file);
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < count; i++)
|
if (!read_single_image(file, &series->images[i]))
|
||||||
{
|
|
||||||
size_t pixel_count = width * height;
|
|
||||||
|
|
||||||
if (fread(series->images[i].buffer, 1, pixel_count, file) != pixel_count)
|
|
||||||
{
|
{
|
||||||
clearSeries(series);
|
clearSeries(series);
|
||||||
fclose(file);
|
fclose(file);
|
||||||
@ -101,17 +121,14 @@ GrayScaleImageSeries *readImages(const char *path)
|
|||||||
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
||||||
void clearSeries(GrayScaleImageSeries *series)
|
void clearSeries(GrayScaleImageSeries *series)
|
||||||
{
|
{
|
||||||
if (series == 0)
|
if (series)
|
||||||
return;
|
|
||||||
|
|
||||||
if (series->images)
|
|
||||||
{
|
{
|
||||||
for (int i = 0; i < series->count; i++)
|
for (int i = 0; i < series->count; i++)
|
||||||
{
|
{
|
||||||
free(series->images[i].buffer);
|
free(series->images[i].buffer);
|
||||||
}
|
}
|
||||||
free(series->images);
|
free(series->images);
|
||||||
|
free(series->labels);
|
||||||
|
free(series);
|
||||||
}
|
}
|
||||||
free(series->labels);
|
|
||||||
free(series);
|
|
||||||
}
|
}
|
||||||
@ -54,7 +54,7 @@ void test_readImagesReturnsCorrectImageWidth(void)
|
|||||||
GrayScaleImageSeries *series = NULL;
|
GrayScaleImageSeries *series = NULL;
|
||||||
const unsigned short expectedWidth = 10;
|
const unsigned short expectedWidth = 10;
|
||||||
const char *path = "testFile.info2";
|
const char *path = "testFile.info2";
|
||||||
prepareImageFile(path, 8, expectedWidth, 2, 1);
|
prepareImageFile(path, expectedWidth, 8, 2, 1);
|
||||||
series = readImages(path);
|
series = readImages(path);
|
||||||
TEST_ASSERT_NOT_NULL(series);
|
TEST_ASSERT_NOT_NULL(series);
|
||||||
TEST_ASSERT_NOT_NULL(series->images);
|
TEST_ASSERT_NOT_NULL(series->images);
|
||||||
@ -70,7 +70,7 @@ void test_readImagesReturnsCorrectImageHeight(void)
|
|||||||
GrayScaleImageSeries *series = NULL;
|
GrayScaleImageSeries *series = NULL;
|
||||||
const unsigned short expectedHeight = 10;
|
const unsigned short expectedHeight = 10;
|
||||||
const char *path = "testFile.info2";
|
const char *path = "testFile.info2";
|
||||||
prepareImageFile(path, expectedHeight, 8, 2, 1);
|
prepareImageFile(path, 8, expectedHeight, 2, 1);
|
||||||
series = readImages(path);
|
series = readImages(path);
|
||||||
TEST_ASSERT_NOT_NULL(series);
|
TEST_ASSERT_NOT_NULL(series);
|
||||||
TEST_ASSERT_NOT_NULL(series->images);
|
TEST_ASSERT_NOT_NULL(series->images);
|
||||||
@ -119,6 +119,13 @@ void test_readImagesFailsOnWrongFileTag(void)
|
|||||||
remove(path);
|
remove(path);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Tests der Hilfsfunktionen
|
||||||
|
|
||||||
|
void test_read_header(void)
|
||||||
|
{
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
void setUp(void) {
|
void setUp(void) {
|
||||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||||
}
|
}
|
||||||
|
|||||||
4
matrix.c
4
matrix.c
@ -138,7 +138,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
|
|||||||
fprintf(stderr, "Fehler: Matrizen haben unterschiedliche Größen (%u x %u) und (%u x %u)\n",
|
fprintf(stderr, "Fehler: Matrizen haben unterschiedliche Größen (%u x %u) und (%u x %u)\n",
|
||||||
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
|
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
|
||||||
|
|
||||||
Matrix empty = {0, 0, NULL};
|
Matrix empty = {NULL, 0, 0};
|
||||||
return empty;
|
return empty;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -149,7 +149,7 @@ Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
|||||||
fprintf(stderr, "Fehler: Matrizen der Dimension (%u x %u) und (%u x %u) koennen nicht multipliziert werden\n",
|
fprintf(stderr, "Fehler: Matrizen der Dimension (%u x %u) und (%u x %u) koennen nicht multipliziert werden\n",
|
||||||
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
|
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
|
||||||
|
|
||||||
Matrix empty = {0, 0, NULL};
|
Matrix empty = {NULL, 0, 0};
|
||||||
return empty;
|
return empty;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
2
matrix.h
2
matrix.h
@ -8,9 +8,9 @@ typedef float MatrixType;
|
|||||||
// TODO Matrixtyp definieren
|
// TODO Matrixtyp definieren
|
||||||
|
|
||||||
typedef struct Matrix {
|
typedef struct Matrix {
|
||||||
|
MatrixType *buffer;
|
||||||
unsigned int rows;
|
unsigned int rows;
|
||||||
unsigned int cols;
|
unsigned int cols;
|
||||||
MatrixType *buffer;
|
|
||||||
} Matrix;
|
} Matrix;
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -5,10 +5,9 @@
|
|||||||
#include "unity.h"
|
#include "unity.h"
|
||||||
#include "neuralNetwork.h"
|
#include "neuralNetwork.h"
|
||||||
|
|
||||||
|
|
||||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||||
{
|
{
|
||||||
// TODO
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||||
@ -16,15 +15,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void)
|
|||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
||||||
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
|
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
|
||||||
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
|
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
|
||||||
MatrixType buffer3[] = {1, 2, 3};
|
MatrixType buffer3[] = {1, 2, 3};
|
||||||
MatrixType buffer4[] = {1, 2};
|
MatrixType buffer4[] = {1, 2};
|
||||||
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
|
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
|
||||||
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
|
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
|
Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -40,12 +39,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -63,12 +62,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -86,12 +85,12 @@ void test_loadModelReturnsCorrectWeights(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -111,12 +110,12 @@ void test_loadModelReturnsCorrectBiases(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -138,7 +137,7 @@ void test_loadModelFailsOnWrongFileTag(void)
|
|||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
FILE *file = fopen(path, "wb");
|
FILE *file = fopen(path, "wb");
|
||||||
|
|
||||||
if(file != NULL)
|
if (file != NULL)
|
||||||
{
|
{
|
||||||
const char *fileTag = "info2_neural_network_file_format";
|
const char *fileTag = "info2_neural_network_file_format";
|
||||||
|
|
||||||
@ -159,12 +158,12 @@ void test_clearModelSetsMembersToNull(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -181,7 +180,7 @@ void test_clearModelSetsMembersToNull(void)
|
|||||||
|
|
||||||
static void someActivation(Matrix *matrix)
|
static void someActivation(Matrix *matrix)
|
||||||
{
|
{
|
||||||
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
for (int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||||
{
|
{
|
||||||
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
||||||
}
|
}
|
||||||
@ -192,23 +191,23 @@ void test_predictReturnsCorrectLabels(void)
|
|||||||
const unsigned char expectedLabels[] = {4, 2};
|
const unsigned char expectedLabels[] = {4, 2};
|
||||||
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
||||||
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
||||||
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
|
GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}};
|
||||||
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
||||||
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
||||||
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
||||||
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
|
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
|
||||||
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
|
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
|
||||||
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
|
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
|
||||||
MatrixType biasBuffer1[] = {200, 0};
|
MatrixType biasBuffer1[] = {200, 0};
|
||||||
MatrixType biasBuffer2[] = {0, -100, 0};
|
MatrixType biasBuffer2[] = {0, -100, 0};
|
||||||
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
||||||
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
|
||||||
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
|
||||||
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
|
||||||
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
{.weights = weights2, .biases = biases2, .activation = someActivation},
|
||||||
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
{.weights = weights3, .biases = biases3, .activation = someActivation}};
|
||||||
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
|
||||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||||
TEST_ASSERT_NOT_NULL(predictedLabels);
|
TEST_ASSERT_NOT_NULL(predictedLabels);
|
||||||
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
||||||
@ -216,11 +215,13 @@ void test_predictReturnsCorrectLabels(void)
|
|||||||
free(predictedLabels);
|
free(predictedLabels);
|
||||||
}
|
}
|
||||||
|
|
||||||
void setUp(void) {
|
void setUp(void)
|
||||||
|
{
|
||||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||||
}
|
}
|
||||||
|
|
||||||
void tearDown(void) {
|
void tearDown(void)
|
||||||
|
{
|
||||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user