Compare commits

...

6 Commits
main ... main

Author SHA1 Message Date
d6f1596c0f Optionale Aufgabe Eigene Ziffern malen 2025-12-02 14:52:51 +01:00
7bffe1fdad merge upstream 2025-11-19 07:52:25 +00:00
8ceb081ffe neuralNetwork.c
neuralNetworkTests.c
check
2025-11-18 14:36:11 +01:00
8d4ee4cc4e matrix.c fix 2025-11-18 14:30:41 +01:00
m_kol
7d9b4bc6bf bla bla bla 2025-11-18 13:59:32 +01:00
e26690d0d0 matrix.h check
matrix.c angefangen
imageInput.c sollte gehen tests gehen nicht bei mi
2025-11-12 19:53:48 +01:00
7 changed files with 771 additions and 38 deletions

View File

@ -9,14 +9,172 @@
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
static int checkFileHeader(FILE *file)
{
char buffer[BUFFER_SIZE];
int length = strlen(FILE_HEADER_STRING);
// Prüfen ob fread erfolgreich war
if (fread(buffer, sizeof(char), length, file) != length) {
return 0; // Lesefehler
}
buffer[length] = '\0';
if (strcmp(buffer, FILE_HEADER_STRING) == 0) {
return 1;
} else {
return 0;
}
}
static int readDimensions(FILE *file, unsigned short * count, unsigned short *width, unsigned short *height)
{
// Anzahl lesen
if (fread(count, sizeof(unsigned short), 1, file) != 1) {
return 0;
}
// Breite lesen
if (fread(width, sizeof(unsigned short), 1, file) != 1) {
return 0;
}
// Höhe lesen
if (fread(height, sizeof(unsigned short), 1, file) != 1) {
return 0;
}
return 1; // Alles ok
}
static int readSingleImage(FILE *file, GrayScaleImage *image, unsigned char *label, unsigned short width, unsigned short height)
{
// Schritt 1: Gesamtzahl Pixel berechnen
int totalPixels = width * height;
// Schritt 2: Speicher allokieren
image->buffer = (unsigned char *)malloc(totalPixels * sizeof(unsigned char));
if (image->buffer == NULL) {
return 0; // Fehler: kein Speicher verfügbar
}
// Schritt 3: Breite und Höhe setzen
image->width = width;
image->height = height;
// Schritt 4: Pixel lesen
if (fread(image->buffer, sizeof(unsigned char), totalPixels, file) != totalPixels) {
free(image->buffer); // Aufräumen!
return 0; // Fehler beim Lesen
}
// Schritt 5: Label lesen
if (fread(label, sizeof(unsigned char), 1, file) != 1) {
free(image->buffer); // Aufräumen!
return 0; // Fehler beim Lesen
}
return 1; // Erfolg!
}
GrayScaleImageSeries *readImages(const char *path)
{
GrayScaleImageSeries *series = NULL;
// Schritt 1: Datei öffnen
FILE *file = fopen(path, "rb");
if (file == NULL) {
return NULL;
}
// Schritt 2: Header prüfen
if (!checkFileHeader(file)) {
fclose(file);
return NULL;
}
// Schritt 3: Dimensionen lesen
unsigned short count, width, height;
if (!readDimensions(file, &count, &width, &height)) {
fclose(file);
return NULL;
}
// Schritt 4: Speicher für die Serie allokieren
GrayScaleImageSeries *series = (GrayScaleImageSeries *)malloc(sizeof(GrayScaleImageSeries));
if (series == NULL) {
fclose(file);
return NULL;
}
// Schritt 5: Speicher für das images-Array allokieren
series->images = (GrayScaleImage *)malloc(count * sizeof(GrayScaleImage));
if (series->images == NULL) {
free(series);
fclose(file);
return NULL;
}
// Schritt 6: Speicher für das labels-Array allokieren
series->labels = (unsigned char *)malloc(count * sizeof(unsigned char));
if (series->labels == NULL) {
free(series->images);
free(series);
fclose(file);
return NULL;
}
// Schritt 7: count setzen
series->count = count;
// Schritt 8: Alle Bilder in einer Schleife einlesen
for (int i = 0; i < count; i++) {
if (!readSingleImage(file, &series->images[i], &series->labels[i], width, height)) {
// Bei Fehler: Aufräumen!
for (int j = 0; j < i; j++) {
free(series->images[j].buffer);
}
free(series->images);
free(series->labels);
free(series);
fclose(file);
return NULL;
}
}
// Schritt 9: Datei schließen
fclose(file);
// Schritt 10: Fertige Serie zurückgeben
return series;
}
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
void clearSeries(GrayScaleImageSeries *series)
{
}
// Schritt 0: Prüfen ob series überhaupt existiert
if (series == NULL) {
return; // Nichts zu tun
}
// Schritt 1: Alle Pixel-Buffer freigeben (für jedes Bild)
if (series->images != NULL) {
for (int i = 0; i < series->count; i++) {
if (series->images[i].buffer != NULL) {
free(series->images[i].buffer); // ← Buffer von Bild i freigeben
}
}
}
// Schritt 2: Das images-Array freigeben
if (series->images != NULL) {
free(series->images);
}
// Schritt 3: Das labels-Array freigeben
if (series->labels != NULL) {
free(series->labels);
}
// Schritt 4: Die Serie-Struktur selbst freigeben
free(series);
}

View File

@ -5,17 +5,17 @@ typedef unsigned char GrayScalePixelType;
typedef struct
{
GrayScalePixelType *buffer;
unsigned int width;
unsigned int height;
} GrayScaleImage;
GrayScalePixelType *buffer; // Breite in Pixeln
unsigned int width; // Höhe in Pixeln
unsigned int height; // Die Pixelwerte (0-255)
} GrayScaleImage; // EIN Bild
typedef struct
{
GrayScaleImage *images;
unsigned char *labels;
unsigned int count;
} GrayScaleImageSeries;
GrayScaleImage *images; // Array von Bildern
unsigned char *labels; // Array von Labels (welche Ziffer?)
unsigned int count; // Wie viele Bilder ?
} GrayScaleImageSeries; // Sammlung der Bilder
GrayScaleImageSeries *readImages(const char *path);
void clearSeries(GrayScaleImageSeries *series);

150
matrix.c
View File

@ -1,35 +1,173 @@
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "matrix.h"
// TODO Matrix-Funktionen implementieren
Matrix createMatrix(unsigned int rows, unsigned int cols)
{
Matrix m;
m.rows = rows;
m.cols = cols;
m.buffer = (MatrixType*)malloc(sizeof(MatrixType) * rows * cols);
// Prüfe auf ungültige Dimensionen
if (rows == 0 || cols == 0) {
m.rows = 0;
m.cols = 0;
m.buffer = NULL;
return m;
}
if (m.buffer == NULL){
fprintf(stderr, "Error: Memory allocation failed in createMatrix!.\n");
m.rows = 0;
m.cols = 0;
return m;
}
for (unsigned int i = 0; i < rows * cols; i++){
m.buffer[i] = 0.0f;
}
return m;
}
void clearMatrix(Matrix *matrix)
{
if (matrix == NULL) {
return;
}
// Speicher freigeben falls vorhanden
if (matrix->buffer != NULL) {
free(matrix->buffer);
matrix->buffer = NULL;
}
// Dimensionen zurücksetzen
matrix->rows = 0;
matrix->cols = 0;
}
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
{
if (rowIdx >= matrix.rows || colIdx >= matrix.cols) {
fprintf(stderr, "Error: setMatrixAt index out of bounds.\n");
return;
}
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
}
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
{
if (rowIdx >= matrix.rows || colIdx >= matrix.cols) {
fprintf(stderr, "Error: getMatrixAt index out of bounds.\n");
return UNDEFINED_MATRIX_VALUE;
}
return matrix.buffer[rowIdx * matrix.cols + colIdx];
}
Matrix add(const Matrix matrix1, const Matrix matrix2)
{
Matrix result;
// Fall 1: Normale elementweise Addition (gleiche Dimensionen)
if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols) {
result = createMatrix(matrix1.rows, matrix1.cols);
if (result.buffer == NULL) {
return result;
}
for (unsigned int i = 0; i < matrix1.rows; i++) {
for (unsigned int j = 0; j < matrix1.cols; j++) {
setMatrixAt(
getMatrixAt(matrix1, i, j) + getMatrixAt(matrix2, i, j),
result,
i, j
);
}
}
return result;
}
// Fall 2: Broadcasting - matrix2 ist Spaltenvektor (cols=1)
else if (matrix1.rows == matrix2.rows && matrix2.cols == 1) {
result = createMatrix(matrix1.rows, matrix1.cols);
if (result.buffer == NULL) {
return result;
}
for (unsigned int i = 0; i < matrix1.rows; i++) {
for (unsigned int j = 0; j < matrix1.cols; j++) {
// matrix2 hat nur 1 Spalte (Index 0), wird über alle Spalten verteilt
setMatrixAt(
getMatrixAt(matrix1, i, j) + getMatrixAt(matrix2, i, 0),
result,
i, j
);
}
}
return result;
}
// Fall 3: Broadcasting - matrix1 ist Spaltenvektor (cols=1)
else if (matrix2.rows == matrix1.rows && matrix1.cols == 1) {
result = createMatrix(matrix2.rows, matrix2.cols);
if (result.buffer == NULL) {
return result;
}
for (unsigned int i = 0; i < matrix2.rows; i++) {
for (unsigned int j = 0; j < matrix2.cols; j++) {
// matrix1 hat nur 1 Spalte (Index 0), wird über alle Spalten verteilt
setMatrixAt(
getMatrixAt(matrix1, i, 0) + getMatrixAt(matrix2, i, j),
result,
i, j
);
}
}
return result;
}
// Fall 4: Ungültige Dimensionen
else {
fprintf(stderr, "Error: Matrix dimensions do not match for addition.\n");
Matrix empty = {0, 0, NULL};
return empty;
}
}
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
{
if (matrix1.cols != matrix2.rows) {
fprintf(stderr, "Error: Invalid matrix dimensions for multiplication.\n");
Matrix empty = {0, 0, NULL};
return empty;
}
Matrix result = createMatrix(matrix1.rows, matrix2.cols);
if (result.buffer == NULL) {
return result;
}
for (unsigned int i = 0; i < matrix1.rows; i++) {
for (unsigned int j = 0; j < matrix2.cols; j++) {
MatrixType sum = 0.0f;
for (unsigned int k = 0; k < matrix1.cols; k++) {
sum += getMatrixAt(matrix1, i, k) * getMatrixAt(matrix2, k, j);
}
setMatrixAt(sum, result, i, j);
}
}
return result;
}

View File

@ -6,7 +6,12 @@
typedef float MatrixType;
// TODO Matrixtyp definieren
typedef struct{
unsigned int rows;
unsigned int cols;
MatrixType* buffer;
} Matrix;
Matrix createMatrix(unsigned int rows, unsigned int cols);
void clearMatrix(Matrix *matrix);

View File

@ -2,10 +2,22 @@
#include <stdio.h>
#include <string.h>
#include "mnistVisualization.h"
#include "imageInput.h"
#include "neuralNetwork.h"
// Matrix-Namenskonflikt mit Raylib lösen: Raylib's Matrix umbenennen
#define Matrix RaylibMatrix
#include "raylib.h"
#undef Matrix
#define MAX_TEXT_LEN 100
// Enum für die verschiedenen Modi
typedef enum {
MODE_BROWSE,
MODE_DRAW
} AppMode;
typedef struct
{
Vector2 position;
@ -13,6 +25,10 @@ typedef struct
const unsigned char *predictions;
unsigned int currentIdx;
Vector2 pixelSize;
AppMode mode;
GrayScaleImage drawingCanvas;
unsigned char canvasPrediction;
const NeuralNetwork *model;
} MnistVisualization;
typedef struct
@ -45,20 +61,86 @@ static TextLabel *createTextLabel(const char *text, unsigned int fontSize, Color
return label;
}
static MnistVisualization *createVisualizationContainer(const GrayScaleImageSeries *series, const unsigned char predictions[], Vector2 size)
static GrayScaleImage createCanvas(unsigned int width, unsigned int height)
{
GrayScaleImage canvas;
canvas.width = width;
canvas.height = height;
canvas.buffer = (GrayScalePixelType *)calloc(width * height, sizeof(GrayScalePixelType));
return canvas;
}
static void clearCanvas(GrayScaleImage *canvas)
{
if(canvas != NULL && canvas->buffer != NULL)
{
memset(canvas->buffer, 0, canvas->width * canvas->height * sizeof(GrayScalePixelType));
}
}
static GrayScaleImage downsampleCanvas(const GrayScaleImage *largeCanvas, unsigned int targetWidth, unsigned int targetHeight)
{
GrayScaleImage smallImage = createCanvas(targetWidth, targetHeight);
if(smallImage.buffer != NULL && largeCanvas != NULL && largeCanvas->buffer != NULL)
{
unsigned int scaleX = largeCanvas->width / targetWidth;
unsigned int scaleY = largeCanvas->height / targetHeight;
for(unsigned int y = 0; y < targetHeight; y++)
{
for(unsigned int x = 0; x < targetWidth; x++)
{
// Durchschnitt über den entsprechenden Bereich berechnen
unsigned int sum = 0;
unsigned int count = 0;
for(unsigned int sy = 0; sy < scaleY; sy++)
{
for(unsigned int sx = 0; sx < scaleX; sx++)
{
unsigned int srcX = x * scaleX + sx;
unsigned int srcY = y * scaleY + sy;
if(srcX < largeCanvas->width && srcY < largeCanvas->height)
{
sum += largeCanvas->buffer[srcY * largeCanvas->width + srcX];
count++;
}
}
}
smallImage.buffer[y * targetWidth + x] = (unsigned char)(sum / count);
}
}
}
return smallImage;
}
static MnistVisualization *createVisualizationContainer(const GrayScaleImageSeries *series, const unsigned char predictions[], Vector2 size, const NeuralNetwork *model)
{
MnistVisualization *container = NULL;
if(size.x > 0 && size.y > 0 && series != NULL && series->images != NULL && series->count > 0 && predictions != NULL)
{
container = (MnistVisualization *)calloc(1, sizeof(MnistVisualization));
if(container != NULL)
{
Vector2 pixelSize = {(int)(size.x / series->images[0].width), (int)(size.y / series->images[0].height)};
// Canvas ist 4x größer (112x112), also pixelSize anpassen
Vector2 pixelSize = {(int)(size.x / (series->images[0].width * 4)),
(int)(size.y / (series->images[0].height * 4))};
container->pixelSize = pixelSize;
container->series = series;
container->predictions = predictions;
container->mode = MODE_BROWSE;
container->model = model;
// Canvas erstellen (4x größer als MNIST für feineres Zeichnen: 112x112 statt 28x28)
unsigned int canvasSize = series->images[0].width * 4;
container->drawingCanvas = createCanvas(canvasSize, canvasSize);
container->canvasPrediction = 0;
}
}
@ -94,15 +176,28 @@ static void drawDigit(const GrayScaleImage image, Vector2 position, Vector2 pixe
}
}
static void drawAll(const MnistVisualization *container, const TextLabel *navigationLabel, const TextLabel *predictionLabel)
static void drawAll(const MnistVisualization *container, const TextLabel *navigationLabel, const TextLabel *predictionLabel, const TextLabel *modeLabel)
{
BeginDrawing();
ClearBackground(BLACK);
drawDigit(container->series->images[container->currentIdx], container->position, container->pixelSize);
if(container->mode == MODE_BROWSE)
{
// Im Browse-Modus: MNIST Bilder sind 28x28, aber pixelSize ist für 112x112
// Also pixelSize * 4 verwenden
Vector2 browsePixelSize = {container->pixelSize.x * 4, container->pixelSize.y * 4};
drawDigit(container->series->images[container->currentIdx], container->position, browsePixelSize);
}
else // MODE_DRAW
{
// Im Draw-Modus: Canvas ist 112x112, pixelSize passt
drawDigit(container->drawingCanvas, container->position, container->pixelSize);
}
drawTextLabel(navigationLabel);
drawTextLabel(predictionLabel);
drawTextLabel(modeLabel);
EndDrawing();
}
@ -114,10 +209,232 @@ static int checkUserInput()
inputResult = -1;
else if(IsKeyReleased(KEY_RIGHT))
inputResult = 1;
return inputResult;
}
static void handleDrawing(MnistVisualization *container)
{
static Vector2 lastMousePos = {-1, -1};
if(IsMouseButtonDown(MOUSE_LEFT_BUTTON))
{
Vector2 mousePos = GetMousePosition();
// Berechne welches Pixel geklickt wurde (pixelSize ist bereits für 112x112)
int pixelX = (int)((mousePos.x - container->position.x) / container->pixelSize.x);
int pixelY = (int)((mousePos.y - container->position.y) / container->pixelSize.y);
// Wenn wir eine vorherige Position haben, zeichne eine Linie
if(lastMousePos.x >= 0 && lastMousePos.y >= 0)
{
int lastPixelX = (int)((lastMousePos.x - container->position.x) / container->pixelSize.x);
int lastPixelY = (int)((lastMousePos.y - container->position.y) / container->pixelSize.y);
// Bresenham Linien-Algorithmus (vereinfacht)
int dx = abs(pixelX - lastPixelX);
int dy = abs(pixelY - lastPixelY);
int sx = (lastPixelX < pixelX) ? 1 : -1;
int sy = (lastPixelY < pixelY) ? 1 : -1;
int err = dx - dy;
int currentX = lastPixelX;
int currentY = lastPixelY;
while(1)
{
// Zeichne dünnen Pinsel für 112x112 Canvas
if(currentX >= 0 && currentX < container->drawingCanvas.width &&
currentY >= 0 && currentY < container->drawingCanvas.height)
{
// Zentrum: 2x2 Pixel weiß (entspricht 0.5x0.5 auf 28x28)
for(int dy = 0; dy <= 1; dy++)
{
for(int dx = 0; dx <= 1; dx++)
{
int nx = currentX + dx;
int ny = currentY + dy;
if(nx >= 0 && nx < container->drawingCanvas.width &&
ny >= 0 && ny < container->drawingCanvas.height)
{
int nidx = ny * container->drawingCanvas.width + nx;
container->drawingCanvas.buffer[nidx] = 255;
}
}
}
// Ring 1: Direkte Nachbarn (sehr hell)
int ring1[][2] = {{-1,0}, {-1,1}, {0,-1}, {2,0}, {2,1}, {0,2}, {1,2}, {1,-1}};
for(int i = 0; i < 8; i++)
{
int nx = currentX + ring1[i][0];
int ny = currentY + ring1[i][1];
if(nx >= 0 && nx < container->drawingCanvas.width &&
ny >= 0 && ny < container->drawingCanvas.height)
{
int nidx = ny * container->drawingCanvas.width + nx;
if(container->drawingCanvas.buffer[nidx] < 200) {
container->drawingCanvas.buffer[nidx] = 200;
}
}
}
// Ring 2: Weitere Nachbarn (mittel)
int ring2[][2] = {{-2,0}, {-2,1}, {-1,-1}, {-1,2}, {0,-2}, {0,3},
{1,-2}, {1,3}, {2,-1}, {2,2}, {3,0}, {3,1}};
for(int i = 0; i < 12; i++)
{
int nx = currentX + ring2[i][0];
int ny = currentY + ring2[i][1];
if(nx >= 0 && nx < container->drawingCanvas.width &&
ny >= 0 && ny < container->drawingCanvas.height)
{
int nidx = ny * container->drawingCanvas.width + nx;
if(container->drawingCanvas.buffer[nidx] < 140) {
container->drawingCanvas.buffer[nidx] = 140;
}
}
}
// Ring 3: Äußere Nachbarn (dunkel)
int ring3[][2] = {{-3,0}, {-3,1}, {-2,-1}, {-2,2}, {-1,-2}, {-1,3},
{0,-3}, {0,4}, {1,-3}, {1,4}, {2,-2}, {2,3},
{3,-1}, {3,2}, {4,0}, {4,1}};
for(int i = 0; i < 16; i++)
{
int nx = currentX + ring3[i][0];
int ny = currentY + ring3[i][1];
if(nx >= 0 && nx < container->drawingCanvas.width &&
ny >= 0 && ny < container->drawingCanvas.height)
{
int nidx = ny * container->drawingCanvas.width + nx;
if(container->drawingCanvas.buffer[nidx] < 80) {
container->drawingCanvas.buffer[nidx] = 80;
}
}
}
}
if(currentX == pixelX && currentY == pixelY) break;
int e2 = 2 * err;
if(e2 > -dy)
{
err -= dy;
currentX += sx;
}
if(e2 < dx)
{
err += dx;
currentY += sy;
}
}
}
else
{
// Erstes Pixel (kein Vorgänger)
if(pixelX >= 0 && pixelX < container->drawingCanvas.width &&
pixelY >= 0 && pixelY < container->drawingCanvas.height)
{
// Gleiche Logik wie oben
for(int dy = 0; dy <= 1; dy++)
{
for(int dx = 0; dx <= 1; dx++)
{
int nx = pixelX + dx;
int ny = pixelY + dy;
if(nx >= 0 && nx < container->drawingCanvas.width &&
ny >= 0 && ny < container->drawingCanvas.height)
{
int nidx = ny * container->drawingCanvas.width + nx;
container->drawingCanvas.buffer[nidx] = 255;
}
}
}
int ring1[][2] = {{-1,0}, {-1,1}, {0,-1}, {2,0}, {2,1}, {0,2}, {1,2}, {1,-1}};
for(int i = 0; i < 8; i++)
{
int nx = pixelX + ring1[i][0];
int ny = pixelY + ring1[i][1];
if(nx >= 0 && nx < container->drawingCanvas.width &&
ny >= 0 && ny < container->drawingCanvas.height)
{
int nidx = ny * container->drawingCanvas.width + nx;
if(container->drawingCanvas.buffer[nidx] < 200) {
container->drawingCanvas.buffer[nidx] = 200;
}
}
}
int ring2[][2] = {{-2,0}, {-2,1}, {-1,-1}, {-1,2}, {0,-2}, {0,3},
{1,-2}, {1,3}, {2,-1}, {2,2}, {3,0}, {3,1}};
for(int i = 0; i < 12; i++)
{
int nx = pixelX + ring2[i][0];
int ny = pixelY + ring2[i][1];
if(nx >= 0 && nx < container->drawingCanvas.width &&
ny >= 0 && ny < container->drawingCanvas.height)
{
int nidx = ny * container->drawingCanvas.width + nx;
if(container->drawingCanvas.buffer[nidx] < 140) {
container->drawingCanvas.buffer[nidx] = 140;
}
}
}
int ring3[][2] = {{-3,0}, {-3,1}, {-2,-1}, {-2,2}, {-1,-2}, {-1,3},
{0,-3}, {0,4}, {1,-3}, {1,4}, {2,-2}, {2,3},
{3,-1}, {3,2}, {4,0}, {4,1}};
for(int i = 0; i < 16; i++)
{
int nx = pixelX + ring3[i][0];
int ny = pixelY + ring3[i][1];
if(nx >= 0 && nx < container->drawingCanvas.width &&
ny >= 0 && ny < container->drawingCanvas.height)
{
int nidx = ny * container->drawingCanvas.width + nx;
if(container->drawingCanvas.buffer[nidx] < 80) {
container->drawingCanvas.buffer[nidx] = 80;
}
}
}
}
}
lastMousePos = mousePos;
}
else
{
// Maustaste losgelassen - Reset der letzten Position
lastMousePos.x = -1;
lastMousePos.y = -1;
}
}
static void updatePredictionForCanvas(MnistVisualization *container)
{
if(container->model != NULL && container->series != NULL && container->series->images != NULL)
{
// Canvas von 112x112 auf 28x28 runterskalieren
unsigned int targetSize = container->series->images[0].width;
GrayScaleImage downsampled = downsampleCanvas(&container->drawingCanvas, targetSize, targetSize);
if(downsampled.buffer != NULL)
{
unsigned char *prediction = predict(*container->model, &downsampled, 1);
if(prediction != NULL)
{
container->canvasPrediction = prediction[0];
free(prediction);
}
// Downsampled Image aufräumen
free(downsampled.buffer);
}
}
}
static void updateDisplayContainer(MnistVisualization *container, int updateDirection)
{
int newIndex = (int)container->currentIdx + updateDirection;
@ -130,44 +447,124 @@ static void updateDisplayContainer(MnistVisualization *container, int updateDire
container->currentIdx = newIndex;
}
static void updatePredictionLabel(TextLabel *predictionLabel, unsigned char trueLabel, unsigned char predictedLabel)
static void updatePredictionLabel(TextLabel *predictionLabel, unsigned char trueLabel, unsigned char predictedLabel, AppMode mode)
{
snprintf(predictionLabel->text, MAX_TEXT_LEN, "True label: %u\nPredicted label: %u", trueLabel, predictedLabel);
if(mode == MODE_BROWSE)
{
snprintf(predictionLabel->text, MAX_TEXT_LEN, "True label: %u\nPredicted label: %u", trueLabel, predictedLabel);
}
else // MODE_DRAW
{
snprintf(predictionLabel->text, MAX_TEXT_LEN, "Predicted label: %u", predictedLabel);
}
}
static void update(MnistVisualization *container, TextLabel *predictionLabel, int updateDirection)
static void updateModeLabel(TextLabel *modeLabel, AppMode mode)
{
updateDisplayContainer(container, updateDirection);
updatePredictionLabel(predictionLabel, container->series->labels[container->currentIdx], container->predictions[container->currentIdx]);
if(mode == MODE_BROWSE)
{
snprintf(modeLabel->text, MAX_TEXT_LEN, "Mode: BROWSE | Press 'D' to draw");
}
else // MODE_DRAW
{
snprintf(modeLabel->text, MAX_TEXT_LEN, "Mode: DRAW | Press 'B' to browse | Press 'C' to clear");
}
}
static void update(MnistVisualization *container, TextLabel *predictionLabel, TextLabel *modeLabel, int updateDirection)
{
// Mode-Wechsel
if(IsKeyPressed(KEY_D))
{
container->mode = MODE_DRAW;
clearCanvas(&container->drawingCanvas);
}
else if(IsKeyPressed(KEY_B))
{
container->mode = MODE_BROWSE;
}
// Canvas löschen im Draw-Mode
if(container->mode == MODE_DRAW && IsKeyPressed(KEY_C))
{
clearCanvas(&container->drawingCanvas);
container->canvasPrediction = 0;
}
if(container->mode == MODE_BROWSE)
{
updateDisplayContainer(container, updateDirection);
updatePredictionLabel(predictionLabel,
container->series->labels[container->currentIdx],
container->predictions[container->currentIdx],
MODE_BROWSE);
}
else // MODE_DRAW
{
handleDrawing(container);
// Prediction alle paar Frames aktualisieren (nicht bei jedem Frame für Performance)
static int frameCounter = 0;
frameCounter++;
if(frameCounter % 10 == 0)
{
updatePredictionForCanvas(container);
}
updatePredictionLabel(predictionLabel, 0, container->canvasPrediction, MODE_DRAW);
}
updateModeLabel(modeLabel, container->mode);
}
void showMnist(unsigned int windowWidth, unsigned int windowHeight, const GrayScaleImageSeries *series, const unsigned char predictions[])
{
// Model laden (für Draw-Modus)
NeuralNetwork model = loadModel("mnist_model.info2");
const Vector2 windowSize = {windowWidth, windowHeight};
MnistVisualization *container = createVisualizationContainer(series, predictions, windowSize);
MnistVisualization *container = createVisualizationContainer(series, predictions, windowSize, &model);
TextLabel *navigationLabel = createTextLabel("Use left and right key to navigate ...", 20, WHITE);
TextLabel *predictionLabel = createTextLabel("", 20, WHITE);
TextLabel *modeLabel = createTextLabel("", 20, WHITE);
navigationLabel->position.x = windowSize.x - 400; // Rechts (mit Abstand)
navigationLabel->position.y = windowSize.y - 30; // Ganz unten
predictionLabel->position.x = 10;
predictionLabel->position.y = windowSize.y - 50;
if(container != NULL && navigationLabel != NULL && predictionLabel != NULL)
modeLabel->position.x = 10;
modeLabel->position.y = 10;
if(container != NULL && navigationLabel != NULL && predictionLabel != NULL && modeLabel != NULL)
{
InitWindow(windowSize.x, windowSize.y, "MNIST Browser");
InitWindow(windowSize.x, windowSize.y, "MNIST Browser & Drawer");
SetTargetFPS(60);
while (!WindowShouldClose())
{
int updateDirection = checkUserInput();
update(container, predictionLabel, updateDirection);
drawAll(container, navigationLabel, predictionLabel);
update(container, predictionLabel, modeLabel, updateDirection);
drawAll(container, navigationLabel, predictionLabel, modeLabel);
}
}
CloseWindow();
free(container);
// Cleanup
if(container != NULL)
{
if(container->drawingCanvas.buffer != NULL)
{
free(container->drawingCanvas.buffer);
}
free(container);
}
free(navigationLabel);
free(predictionLabel);
free(modeLabel);
clearModel(&model);
}

View File

@ -170,7 +170,7 @@ NeuralNetwork loadModel(const char *path)
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
{
Matrix matrix = {NULL, 0, 0};
Matrix matrix = {0, 0, NULL}; //hier evtl Null auf int casten?
if(count > 0 && images != NULL)
{

View File

@ -8,7 +8,42 @@
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
// TODO
FILE *file = fopen(path, "wb");
if (file == NULL) {
return;
}
// 1. Header schreiben
const char *fileTag = "__info2_neural_network_file_format__";
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
// 2. Alle Schichten schreiben
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
// NUR bei der ERSTEN Schicht: Input-Dimension schreiben
if (i == 0) {
int inputDim = nn.layers[i].weights.cols;
fwrite(&inputDim, sizeof(int), 1, file);
}
// Output-Dimension (= Anzahl Zeilen der Gewichtsmatrix)
int outputDim = nn.layers[i].weights.rows;
fwrite(&outputDim, sizeof(int), 1, file);
// Gewichtsmatrix schreiben (alle Werte)
int weightCount = nn.layers[i].weights.rows * nn.layers[i].weights.cols;
fwrite(nn.layers[i].weights.buffer, sizeof(MatrixType), weightCount, file);
// Bias-Matrix schreiben (alle Werte)
int biasCount = nn.layers[i].biases.rows * nn.layers[i].biases.cols;
fwrite(nn.layers[i].biases.buffer, sizeof(MatrixType), biasCount, file);
}
// 3. Terminator schreiben (outputDimension = 0 zum Stoppen)
int terminator = 0;
fwrite(&terminator, sizeof(int), 1, file);
fclose(file);
}
void test_loadModelReturnsCorrectNumberOfLayers(void)