Compare commits
42 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2a1ff310db | ||
|
|
3c4e4df496 | ||
|
|
fd1bc886a7 | ||
|
|
efa260ccbe | ||
|
|
801abc1b66 | ||
|
|
8e518a3bdd | ||
|
|
0baf646832 | ||
|
|
0f0f2f19c3 | ||
| 98dd789680 | |||
|
|
7aa57191da | ||
|
|
da4eaa718d | ||
|
|
56d59b1b50 | ||
|
|
21d9b5c01d | ||
|
|
e7930c7eb0 | ||
|
|
5075c34983 | ||
|
|
b187a13b17 | ||
|
|
4e2ee7078a | ||
|
|
86a9d16c4f | ||
|
|
ede0bd8bd8 | ||
|
|
35a598a276 | ||
|
|
e1ea9f33cd | ||
| 7f3c6d1d3f | |||
|
|
0886489d49 | ||
|
|
f9c46a6784 | ||
| 97df88c0ab | |||
| be07dcffcf | |||
|
|
858673bdca | ||
|
|
5fcc3cd042 | ||
| 619cd95a5c | |||
|
|
6b9711e47d | ||
| 653312f8a6 | |||
|
|
2b751ef931 | ||
|
|
0081e8f89e | ||
| d8e759b436 | |||
|
|
3c49920613 | ||
| 28944bd871 | |||
|
|
3de79e2b83 | ||
|
|
ec54bdd951 | ||
| 29b2966c63 | |||
|
|
0e3f03a03d | ||
| 41c164d3b2 | |||
| b4bc2fae8a |
8
.gitignore
vendored
8
.gitignore
vendored
@ -1,4 +1,10 @@
|
||||
mnist
|
||||
runTests
|
||||
*.o
|
||||
*.exe
|
||||
*.exe
|
||||
.vscode/settings.json
|
||||
.vscode/launch.json
|
||||
.vscode/settings.json
|
||||
.vscode/settings.json
|
||||
runImageInputTests
|
||||
testFile.info2
|
||||
3
.vscode/settings.json
vendored
Normal file
3
.vscode/settings.json
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"makefile.configureOnOpen": false
|
||||
}
|
||||
142
imageInput.c
142
imageInput.c
@ -1,22 +1,136 @@
|
||||
#include "imageInput.h"
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "imageInput.h"
|
||||
|
||||
#define BUFFER_SIZE 100
|
||||
#define FILE_HEADER_STRING "__info2_image_file_format__"
|
||||
// define BUFFER 100
|
||||
// 10x10 pixel
|
||||
|
||||
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
||||
GrayScaleImageSeries *readImages(const char *path)
|
||||
{
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
|
||||
return series;
|
||||
/* ----------------------------------------------------------
|
||||
1. Header prüfen
|
||||
---------------------------------------------------------- */
|
||||
static int readHeader(FILE *file) {
|
||||
char header[sizeof(FILE_HEADER_STRING)];
|
||||
if (fread(header, 1, sizeof(FILE_HEADER_STRING) - 1, file) !=
|
||||
sizeof(FILE_HEADER_STRING) - 1)
|
||||
return 0;
|
||||
header[sizeof(FILE_HEADER_STRING) - 1] = '\0';
|
||||
return strcmp(header, FILE_HEADER_STRING) == 0;
|
||||
}
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
||||
void clearSeries(GrayScaleImageSeries *series)
|
||||
{
|
||||
}
|
||||
/* ----------------------------------------------------------
|
||||
2. Meta-Daten lesen (unsigned short)
|
||||
---------------------------------------------------------- */
|
||||
static int readMeta(FILE *file, unsigned short *count, unsigned short *width,
|
||||
unsigned short *height) {
|
||||
if (fread(count, sizeof(unsigned short), 1, file) != 1)
|
||||
return 0;
|
||||
if (fread(width, sizeof(unsigned short), 1, file) != 1)
|
||||
return 0;
|
||||
if (fread(height, sizeof(unsigned short), 1, file) != 1)
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------
|
||||
3. Einzelbild lesen
|
||||
---------------------------------------------------------- */
|
||||
static int readSingleImage(FILE *file, GrayScaleImage *img,
|
||||
unsigned short width, unsigned short height) {
|
||||
img->width = width;
|
||||
img->height = height;
|
||||
|
||||
size_t numPixels = (size_t)width * (size_t)height; // anzahl an pixeln
|
||||
img->buffer = malloc(numPixels);
|
||||
if (!img->buffer)
|
||||
return 0;
|
||||
|
||||
if (fread(img->buffer, 1, numPixels, file) != numPixels) {
|
||||
free(img->buffer);
|
||||
img->buffer = NULL; // fehler bei ungültiger eingabe
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------
|
||||
4. Label lesen
|
||||
---------------------------------------------------------- */
|
||||
static int readLabel(FILE *file, unsigned char *label) {
|
||||
return fread(label, 1, 1, file) == 1;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------
|
||||
5. Komplette Bildserie lesen
|
||||
---------------------------------------------------------- */
|
||||
GrayScaleImageSeries *readImages(const char *path) {
|
||||
FILE *file = fopen(path, "rb");
|
||||
if (!file)
|
||||
return NULL;
|
||||
|
||||
if (!readHeader(file)) {
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
unsigned short count, width, height;
|
||||
if (!readMeta(file, &count, &width, &height)) {
|
||||
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
// printf("%d, %d, %d", count, width, height);
|
||||
|
||||
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
|
||||
if (!series) {
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
series->count = count;
|
||||
series->images = malloc(count * sizeof(GrayScaleImage));
|
||||
series->labels = malloc(count * sizeof(unsigned char));
|
||||
if (!series->images || !series->labels) {
|
||||
free(series->images);
|
||||
free(series->labels);
|
||||
free(series);
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < count; i++) {
|
||||
if (!readSingleImage(file, &series->images[i], width, height) ||
|
||||
!readLabel(file, &series->labels[i])) {
|
||||
// Aufräumen bei Fehler
|
||||
for (unsigned int j = 0; j < i; j++) {
|
||||
free(series->images[j].buffer);
|
||||
}
|
||||
free(series->images);
|
||||
free(series->labels);
|
||||
free(series);
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
return series;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------
|
||||
6. Speicher komplett freigeben
|
||||
---------------------------------------------------------- */
|
||||
void clearSeries(GrayScaleImageSeries *series) {
|
||||
if (!series)
|
||||
return;
|
||||
|
||||
for (unsigned int i = 0; i < series->count; i++) {
|
||||
free(series->images[i].buffer);
|
||||
}
|
||||
|
||||
free(series->images);
|
||||
free(series->labels);
|
||||
free(series);
|
||||
}
|
||||
|
||||
@ -1,143 +1,210 @@
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "unity.h"
|
||||
#include "imageInput.h"
|
||||
#include "unity.h"
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
/* ---------------------------------------------------------
|
||||
Hilfsfunktion: Testdatei vorbereiten
|
||||
--------------------------------------------------------- */
|
||||
static void prepareImageFile(const char *path, unsigned int width,
|
||||
unsigned int height, unsigned int numberOfImages,
|
||||
unsigned char label) {
|
||||
FILE *file = fopen(path, "wb");
|
||||
if (!file)
|
||||
return;
|
||||
|
||||
static void prepareImageFile(const char *path, unsigned short int width, unsigned short int height, unsigned int short numberOfImages, unsigned char label)
|
||||
{
|
||||
FILE *file = fopen(path, "wb");
|
||||
// Header
|
||||
const char *fileTag = "__info2_image_file_format__";
|
||||
fwrite(fileTag, 1, strlen(fileTag), file);
|
||||
|
||||
if(file != NULL)
|
||||
{
|
||||
const char *fileTag = "__info2_image_file_format__";
|
||||
GrayScalePixelType *zeroBuffer = (GrayScalePixelType *)calloc(numberOfImages * width * height, sizeof(GrayScalePixelType));
|
||||
// Meta-Daten als unsigned short
|
||||
unsigned short n = (unsigned short)numberOfImages;
|
||||
unsigned short w = (unsigned short)width;
|
||||
unsigned short h = (unsigned short)height;
|
||||
fwrite(&n, sizeof(unsigned short), 1, file);
|
||||
fwrite(&w, sizeof(unsigned short), 1, file);
|
||||
fwrite(&h, sizeof(unsigned short), 1, file);
|
||||
|
||||
if(zeroBuffer != NULL)
|
||||
{
|
||||
fwrite(fileTag, sizeof(fileTag[0]), strlen(fileTag), file);
|
||||
fwrite(&numberOfImages, sizeof(numberOfImages), 1, file);
|
||||
fwrite(&width, sizeof(width), 1, file);
|
||||
fwrite(&height, sizeof(height), 1, file);
|
||||
// Pixelbuffer
|
||||
GrayScalePixelType *buffer =
|
||||
calloc(width * height, sizeof(GrayScalePixelType));
|
||||
if (!buffer) {
|
||||
fclose(file);
|
||||
return;
|
||||
}
|
||||
for (unsigned int i = 0; i < width * height; i++)
|
||||
buffer[i] = (GrayScalePixelType)i;
|
||||
|
||||
for(int i = 0; i < numberOfImages; i++)
|
||||
{
|
||||
fwrite(zeroBuffer, sizeof(GrayScalePixelType), width * height, file);
|
||||
fwrite(&label, sizeof(unsigned char), 1, file);
|
||||
}
|
||||
// Jedes Bild schreiben: Pixel + Label
|
||||
for (unsigned int img = 0; img < numberOfImages; img++) {
|
||||
fwrite(buffer, sizeof(GrayScalePixelType), width * height, file);
|
||||
fwrite(&label, sizeof(unsigned char), 1, file);
|
||||
}
|
||||
|
||||
free(zeroBuffer);
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
}
|
||||
free(buffer);
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------
|
||||
Unit Tests
|
||||
--------------------------------------------------------- */
|
||||
|
||||
void test_readImagesReturnsCorrectNumberOfImages(void)
|
||||
{
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const unsigned short expectedNumberOfImages = 2;
|
||||
const char *path = "testFile.info2";
|
||||
prepareImageFile(path, 8, 8, expectedNumberOfImages, 1);
|
||||
series = readImages(path);
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_EQUAL_UINT16(expectedNumberOfImages, series->count);
|
||||
clearSeries(series);
|
||||
remove(path);
|
||||
void test_readImagesReturnsCorrectNumberOfImages(void) {
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const unsigned int expectedNumberOfImages = 2;
|
||||
const char *path = "testFile.info2";
|
||||
prepareImageFile(path, 8, 8, expectedNumberOfImages, 1);
|
||||
series = readImages(path);
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_EQUAL_UINT(expectedNumberOfImages, series->count);
|
||||
clearSeries(series);
|
||||
remove(path);
|
||||
}
|
||||
|
||||
void test_readImagesReturnsCorrectImageWidth(void)
|
||||
{
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const unsigned short expectedWidth = 10;
|
||||
const char *path = "testFile.info2";
|
||||
prepareImageFile(path, expectedWidth, 8, 2, 1);
|
||||
series = readImages(path);
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->images);
|
||||
TEST_ASSERT_EQUAL_UINT16(2, series->count);
|
||||
TEST_ASSERT_EQUAL_UINT16(expectedWidth, series->images[0].width);
|
||||
TEST_ASSERT_EQUAL_UINT16(expectedWidth, series->images[1].width);
|
||||
clearSeries(series);
|
||||
remove(path);
|
||||
void test_readImagesReturnsCorrectImageWidth(void) {
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const unsigned int expectedWidth = 10;
|
||||
const char *path = "testFile.info2";
|
||||
prepareImageFile(path, expectedWidth, 8, 2, 1);
|
||||
series = readImages(path);
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->images);
|
||||
TEST_ASSERT_EQUAL_UINT(2, series->count);
|
||||
TEST_ASSERT_EQUAL_UINT(expectedWidth, series->images[0].width);
|
||||
TEST_ASSERT_EQUAL_UINT(expectedWidth, series->images[1].width);
|
||||
clearSeries(series);
|
||||
remove(path);
|
||||
}
|
||||
|
||||
void test_readImagesReturnsCorrectImageHeight(void)
|
||||
{
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const unsigned short expectedHeight = 10;
|
||||
const char *path = "testFile.info2";
|
||||
prepareImageFile(path, 8, expectedHeight, 2, 1);
|
||||
series = readImages(path);
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->images);
|
||||
TEST_ASSERT_EQUAL_UINT16(2, series->count);
|
||||
TEST_ASSERT_EQUAL_UINT16(expectedHeight, series->images[0].height);
|
||||
TEST_ASSERT_EQUAL_UINT16(expectedHeight, series->images[1].height);
|
||||
clearSeries(series);
|
||||
remove(path);
|
||||
void test_readImagesReturnsCorrectImageHeight(void) {
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const unsigned int expectedHeight = 10;
|
||||
const char *path = "testFile.info2";
|
||||
prepareImageFile(path, 8, expectedHeight, 2, 1);
|
||||
series = readImages(path);
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->images);
|
||||
TEST_ASSERT_EQUAL_UINT(2, series->count);
|
||||
TEST_ASSERT_EQUAL_UINT(expectedHeight, series->images[0].height);
|
||||
TEST_ASSERT_EQUAL_UINT(expectedHeight, series->images[1].height);
|
||||
clearSeries(series);
|
||||
remove(path);
|
||||
}
|
||||
|
||||
void test_readImagesReturnsCorrectLabels(void)
|
||||
{
|
||||
const unsigned char expectedLabel = 15;
|
||||
void test_readImagesReturnsCorrectLabels(void) {
|
||||
const unsigned char expectedLabel = 15;
|
||||
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const char *path = "testFile.info2";
|
||||
prepareImageFile(path, 8, 8, 2, expectedLabel);
|
||||
series = readImages(path);
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->labels);
|
||||
TEST_ASSERT_EQUAL_UINT16(2, series->count);
|
||||
for (int i = 0; i < 2; i++) {
|
||||
TEST_ASSERT_EQUAL_UINT8(expectedLabel, series->labels[i]);
|
||||
}
|
||||
clearSeries(series);
|
||||
remove(path);
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const char *path = "testFile.info2";
|
||||
prepareImageFile(path, 8, 8, 2, expectedLabel);
|
||||
series = readImages(path);
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->labels);
|
||||
TEST_ASSERT_EQUAL_UINT(2, series->count);
|
||||
for (int i = 0; i < 2; i++) {
|
||||
TEST_ASSERT_EQUAL_UINT8(expectedLabel, series->labels[i]);
|
||||
}
|
||||
clearSeries(series);
|
||||
remove(path);
|
||||
}
|
||||
|
||||
void test_readImagesReturnsNullOnNotExistingPath(void)
|
||||
{
|
||||
const char *path = "testFile.txt";
|
||||
remove(path);
|
||||
void test_readImagesReturnsNullOnNotExistingPath(void) {
|
||||
const char *path = "testFile.txt";
|
||||
remove(path);
|
||||
TEST_ASSERT_NULL(readImages(path));
|
||||
}
|
||||
|
||||
void test_readImagesFailsOnWrongFileTag(void) {
|
||||
const char *path = "testFile.info2";
|
||||
FILE *file = fopen(path, "w");
|
||||
if (file != NULL) {
|
||||
fprintf(file, "some_tag ");
|
||||
fclose(file);
|
||||
TEST_ASSERT_NULL(readImages(path));
|
||||
}
|
||||
remove(path);
|
||||
}
|
||||
|
||||
void test_readImagesFailsOnWrongFileTag(void)
|
||||
{
|
||||
const char *path = "testFile.info2";
|
||||
FILE *file = fopen(path, "w");
|
||||
if(file != NULL)
|
||||
{
|
||||
fprintf(file, "some_tag ");
|
||||
fclose(file);
|
||||
TEST_ASSERT_NULL(readImages(path));
|
||||
}
|
||||
remove(path);
|
||||
// Test
|
||||
|
||||
void test_read_GrayScale_Pixel(
|
||||
void) { // testet das einlesen eines graustufenbildes von readImages()
|
||||
GrayScaleImageSeries *series = NULL; // enthält später das Bild
|
||||
const char *path = "testFile.info2";
|
||||
|
||||
prepareImageFile(path, 8, 8, 1,
|
||||
1); // Höhe x Breite in Pixel, Anzahl Bilder und Kategorie
|
||||
series = readImages(path);
|
||||
|
||||
TEST_ASSERT_NOT_NULL(series); // Speicher reservieren
|
||||
TEST_ASSERT_NOT_NULL(series->images); // Inhalt ist da
|
||||
TEST_ASSERT_EQUAL_UINT(1, series->count); // Anzahl der Bilder stimmt
|
||||
|
||||
for (int i = 0; i < (8 * 8); i++) {
|
||||
TEST_ASSERT_EQUAL_UINT8(
|
||||
(GrayScalePixelType)i,
|
||||
series->images[0].buffer[i]); // alle Pixelwerte prüfen
|
||||
}
|
||||
|
||||
clearSeries(series);
|
||||
remove(path);
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
/* ---------------------------------------------------------
|
||||
Optional: Mehrere Bilder gleichzeitig testen
|
||||
--------------------------------------------------------- */
|
||||
|
||||
void test_readImagesMultipleImagesContent(void) {
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const char *path = "testFile.info2";
|
||||
const unsigned int numberOfImages = 3;
|
||||
const unsigned int width = 4;
|
||||
const unsigned int height = 4;
|
||||
const unsigned char label = 7;
|
||||
|
||||
prepareImageFile(path, width, height, numberOfImages, label);
|
||||
|
||||
series = readImages(path);
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->images);
|
||||
TEST_ASSERT_NOT_NULL(series->labels);
|
||||
TEST_ASSERT_EQUAL_UINT(numberOfImages, series->count);
|
||||
|
||||
for (unsigned int img = 0; img < numberOfImages; img++) {
|
||||
for (unsigned int i = 0; i < width * height; i++)
|
||||
TEST_ASSERT_EQUAL_UINT8((GrayScalePixelType)i,
|
||||
series->images[img].buffer[i]);
|
||||
TEST_ASSERT_EQUAL_UINT8(label, series->labels[img]);
|
||||
}
|
||||
|
||||
clearSeries(series);
|
||||
remove(path);
|
||||
}
|
||||
|
||||
void tearDown(void) {
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
/* ---------------------------------------------------------
|
||||
Setup / Teardown
|
||||
--------------------------------------------------------- */
|
||||
void setUp(void) {}
|
||||
void tearDown(void) {}
|
||||
|
||||
/* ---------------------------------------------------------
|
||||
main()
|
||||
--------------------------------------------------------- */
|
||||
int main(void) {
|
||||
UNITY_BEGIN();
|
||||
|
||||
printf("\n============================\nImage input "
|
||||
"tests\n============================\n");
|
||||
|
||||
RUN_TEST(test_readImagesReturnsCorrectNumberOfImages);
|
||||
RUN_TEST(test_readImagesReturnsCorrectImageWidth);
|
||||
RUN_TEST(test_readImagesReturnsCorrectImageHeight);
|
||||
RUN_TEST(test_readImagesReturnsCorrectLabels);
|
||||
RUN_TEST(test_readImagesReturnsNullOnNotExistingPath);
|
||||
RUN_TEST(test_readImagesFailsOnWrongFileTag);
|
||||
RUN_TEST(test_read_GrayScale_Pixel);
|
||||
RUN_TEST(test_readImagesMultipleImagesContent);
|
||||
|
||||
return UNITY_END();
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
UNITY_BEGIN();
|
||||
|
||||
printf("\n============================\nImage input tests\n============================\n");
|
||||
RUN_TEST(test_readImagesReturnsCorrectNumberOfImages);
|
||||
RUN_TEST(test_readImagesReturnsCorrectImageWidth);
|
||||
RUN_TEST(test_readImagesReturnsCorrectImageHeight);
|
||||
RUN_TEST(test_readImagesReturnsCorrectLabels);
|
||||
RUN_TEST(test_readImagesReturnsNullOnNotExistingPath);
|
||||
RUN_TEST(test_readImagesFailsOnWrongFileTag);
|
||||
|
||||
return UNITY_END();
|
||||
}
|
||||
6
makefile
6
makefile
@ -59,8 +59,8 @@ imageInputTests: imageInput.o imageInputTests.c $(unityfolder)/unity.c
|
||||
# --------------------------
|
||||
clean:
|
||||
ifeq ($(OS),Windows_NT)
|
||||
del /f *.o *.exe
|
||||
else
|
||||
rm -f *.o mnist runMatrixTests runNeuralNetworkTests runImageInputTests
|
||||
else
|
||||
del /f *.o *.exe
|
||||
endif
|
||||
|
||||
|
||||
223
matrix.c
223
matrix.c
@ -1,35 +1,212 @@
|
||||
#include "matrix.h"
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "matrix.h"
|
||||
|
||||
// TODO Matrix-Funktionen implementieren
|
||||
/*typedef struct {
|
||||
unsigned int rows; //Zeilen
|
||||
unsigned int cols; //Spalten
|
||||
MatrixType *buffer; //Zeiger auf Speicherbereich Reihen*Spalten
|
||||
} Matrix;*/
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
||||
{
|
||||
|
||||
Matrix createMatrix(const unsigned int rows, const unsigned int cols) {
|
||||
if (cols == 0 || rows == 0) {
|
||||
Matrix errorMatrix = {0, 0, NULL};
|
||||
return errorMatrix;
|
||||
}
|
||||
MatrixType *buffer =
|
||||
malloc(rows * cols * sizeof(MatrixType)); // Speicher reservieren, malloc
|
||||
// liefert Zeiger auf Speicher
|
||||
Matrix newMatrix = {rows, cols, buffer}; // neue Matrix nach struct
|
||||
return newMatrix;
|
||||
}
|
||||
void clearMatrix(Matrix *matrix) {
|
||||
|
||||
if (matrix->buffer != NULL) {
|
||||
free((*matrix).buffer);
|
||||
matrix->buffer = NULL;
|
||||
}
|
||||
matrix->rows = 0;
|
||||
matrix->cols = 0;
|
||||
}
|
||||
|
||||
void clearMatrix(Matrix *matrix)
|
||||
{
|
||||
|
||||
}
|
||||
void setMatrixAt(const MatrixType value, Matrix matrix,
|
||||
const unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
||||
const unsigned int colIdx) {
|
||||
|
||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols) {
|
||||
// Speichergröße nicht überschreiten
|
||||
return;
|
||||
}
|
||||
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
||||
// rowIdx * matrix.cols -> Beginn der Zeile colIdx ->Spalte
|
||||
// innerhalb der Zeile
|
||||
}
|
||||
MatrixType
|
||||
getMatrixAt(const Matrix matrix,
|
||||
const unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
||||
const unsigned int colIdx) {
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols ||
|
||||
matrix.buffer == NULL) { // Speichergröße nicht überschreiten
|
||||
return UNDEFINED_MATRIX_VALUE;
|
||||
}
|
||||
|
||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
|
||||
MatrixType value = matrix.buffer[rowIdx * matrix.cols + colIdx];
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
|
||||
Matrix broadCastCols(const Matrix matrix, const unsigned int cols) {
|
||||
Matrix copy1 = createMatrix(matrix.rows, cols);
|
||||
for (int r = 0; r < matrix.rows; r++) {
|
||||
MatrixType valueMatrix1 = getMatrixAt(matrix, r, 0);
|
||||
for (int c = 0; c < cols; c++) {
|
||||
setMatrixAt(valueMatrix1, copy1, r, c);
|
||||
}
|
||||
}
|
||||
return copy1;
|
||||
}
|
||||
Matrix broadCastRows(const Matrix matrix, const unsigned int rows) {
|
||||
Matrix copy1 = createMatrix(rows, matrix.cols);
|
||||
for (int c = 0; c < matrix.cols; c++) {
|
||||
MatrixType valueMatrix1 = getMatrixAt(matrix, 0, c);
|
||||
for (int r = 0; r < rows; r++) {
|
||||
setMatrixAt(valueMatrix1, copy1, r, c);
|
||||
}
|
||||
}
|
||||
return copy1;
|
||||
}
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2) {
|
||||
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
|
||||
}
|
||||
// Ergebnismatrix
|
||||
Matrix result;
|
||||
const int cols1 = matrix1.cols;
|
||||
const int rows1 = matrix1.rows;
|
||||
const int cols2 = matrix2.cols;
|
||||
const int rows2 = matrix2.rows;
|
||||
|
||||
const int rowsEqual = (matrix1.rows == matrix2.rows) ? 1 : 0;
|
||||
const int colsEqual = (matrix1.cols == matrix2.cols) ? 1 : 0;
|
||||
|
||||
// Broadcasting nur bei Vektor und Matrix, Fehlermeldung bei zwei unpassender
|
||||
// Matrix
|
||||
if (rowsEqual == 1 && colsEqual == 1) {
|
||||
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
||||
if (result.buffer == NULL) {
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
for (int i = 0; i < rows1; i++) {
|
||||
for (int j = 0; j < cols1; j++) {
|
||||
int valueM1 = getMatrixAt(matrix1, i, j);
|
||||
int valueM2 = getMatrixAt(matrix2, i, j);
|
||||
int sum = valueM1 + valueM2;
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
} else if (rowsEqual == 1 && (cols1 == 1 || cols2 == 1)) {
|
||||
if (cols1 == 1) { // broadcasting von vektor 1 zu matrix 1, add
|
||||
Matrix newMatrix = broadCastCols(matrix1, cols2);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
|
||||
if (result.buffer == NULL) {
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
for (int i = 0; i < rows1; i++) {
|
||||
for (int j = 0; j < cols2; j++) {
|
||||
int valueM1 = getMatrixAt(newMatrix, i, j);
|
||||
int valueM2 = getMatrixAt(matrix2, i, j);
|
||||
int sum = valueM1 + valueM2;
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
clearMatrix(&newMatrix);
|
||||
return result;
|
||||
} else {
|
||||
Matrix newMatrix2 = broadCastCols(matrix2, cols1);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
|
||||
if (result.buffer == NULL) {
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
for (int i = 0; i < rows1; i++) {
|
||||
for (int j = 0; j < cols1; j++) {
|
||||
int valueM1 = getMatrixAt(matrix1, i, j);
|
||||
int valueM2 = getMatrixAt(newMatrix2, i, j);
|
||||
int sum = valueM1 + valueM2;
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
else if ((rows1 == 1 || rows2 == 1) && colsEqual == 1) {
|
||||
if (rows1 == 1) {
|
||||
Matrix newMatrix = broadCastRows(matrix1, rows2);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
|
||||
if (result.buffer == NULL) {
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
for (int i = 0; i < rows2; i++) {
|
||||
for (int j = 0; j < cols1; j++) {
|
||||
int valueM1 = getMatrixAt(newMatrix, i, j);
|
||||
int valueM2 = getMatrixAt(matrix2, i, j);
|
||||
int sum = valueM1 + valueM2;
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
} else {
|
||||
Matrix newMatrix2 = broadCastRows(matrix2, rows1);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
|
||||
if (result.buffer == NULL) {
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
for (int i = 0; i < rows1; i++) {
|
||||
for (int j = 0; j < cols1; j++) {
|
||||
int valueM1 = getMatrixAt(matrix1, i, j);
|
||||
int valueM2 = getMatrixAt(newMatrix2, i, j);
|
||||
int sum = valueM1 + valueM2;
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
clearMatrix(&newMatrix2);
|
||||
return result;
|
||||
}
|
||||
} else {
|
||||
// kein add möglich
|
||||
Matrix errorMatrix = {0, 0, NULL};
|
||||
return errorMatrix;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2) {
|
||||
// Spalten1 müssen gleich zeilen2 sein! dann multiplizieren
|
||||
if (matrix1.cols == matrix2.rows) {
|
||||
Matrix multMatrix = createMatrix(matrix1.rows, matrix2.cols);
|
||||
// durch neue matrix iterieren
|
||||
for (int r = 0; r < matrix1.rows; r++) {
|
||||
for (int c = 0; c < matrix2.cols; c++) {
|
||||
MatrixType sum = 0.0;
|
||||
// skalarprodukte berechnen, k damit die ganze zeile mal die ganze
|
||||
// spalte genommen wird quasi
|
||||
for (int k = 0; k < matrix1.cols; k++) {
|
||||
// sum+=
|
||||
// matrix1.buffer[r*matrix1.cols+k]*matrix2.buffer[k*matrix2.cols+c];
|
||||
sum += getMatrixAt(matrix1, r, k) * getMatrixAt(matrix2, k, c);
|
||||
}
|
||||
// Ergebnisse in neue matrix speichern
|
||||
setMatrixAt(sum, multMatrix, r, c);
|
||||
}
|
||||
}
|
||||
return multMatrix;
|
||||
}
|
||||
// sonst fehler, kein multiply möglich
|
||||
else {
|
||||
Matrix errorMatrix = {0, 0, NULL};
|
||||
return errorMatrix;
|
||||
}
|
||||
}
|
||||
|
||||
17
matrix.h
17
matrix.h
@ -6,14 +6,23 @@
|
||||
typedef float MatrixType;
|
||||
|
||||
// TODO Matrixtyp definieren
|
||||
typedef struct {
|
||||
unsigned int rows;
|
||||
unsigned int cols;
|
||||
MatrixType *buffer;
|
||||
|
||||
} Matrix;
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
||||
Matrix createMatrix(const unsigned int rows, const unsigned int cols);
|
||||
void clearMatrix(Matrix *matrix);
|
||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx);
|
||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx);
|
||||
void setMatrixAt(const MatrixType value, Matrix matrix,
|
||||
const unsigned int rowIdx, const unsigned int colIdx);
|
||||
MatrixType getMatrixAt(const Matrix matrix, const unsigned int rowIdx,
|
||||
const unsigned int colIdx);
|
||||
|
||||
Matrix broadCastCols(const Matrix matrix, const unsigned int cols);
|
||||
Matrix broadCastRows(const Matrix matrix, const unsigned int rows);
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2);
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2);
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
29
neuralN_readFiles
Normal file
29
neuralN_readFiles
Normal file
@ -0,0 +1,29 @@
|
||||
Inhalte: Dynamische Speicherverwaltung, Strukturen, Dateien lesen.
|
||||
|
||||
Ziel: Die Bilder aus mnist_test.info 2 auslesen
|
||||
|
||||
Struktur für einlesen des Strings am Anfang der Datei:
|
||||
int AnzahlBilder
|
||||
int breiteBilder
|
||||
int LaengeBilder
|
||||
|
||||
Struktur für Bilder:
|
||||
unsinged int array Breite * Höhe
|
||||
unsigned int Klasse (Label 0 - 9)
|
||||
|
||||
|
||||
Speicher für Bilder dynamisch allokieren
|
||||
|
||||
GrayScaleImageSeries:
|
||||
datei einlesen
|
||||
header String aus der Datei lesen
|
||||
mit header String den benötigten Speicher freigeben
|
||||
in den Speicher die Datei einschreiben (mit Hilfsfunktion)
|
||||
|
||||
Hilfsfunktion (saveFile)
|
||||
gehe zum Anfang des Strings
|
||||
speicher alles der Reihe nach ein
|
||||
|
||||
clearSeries:
|
||||
pointer der be malloc kommt nehemen
|
||||
free()
|
||||
435
neuralNetwork.c
435
neuralNetwork.c
@ -1,268 +1,235 @@
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include "neuralNetwork.h"
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#define BUFFER_SIZE 100
|
||||
#define FILE_HEADER_STRING "__info2_neural_network_file_format__"
|
||||
|
||||
static void softmax(Matrix *matrix)
|
||||
{
|
||||
if(matrix->cols > 0)
|
||||
{
|
||||
double *colSums = (double *)calloc(matrix->cols, sizeof(double));
|
||||
static void softmax(Matrix *matrix) {
|
||||
if (matrix->cols > 0) {
|
||||
double *colSums = (double *)calloc(matrix->cols, sizeof(double));
|
||||
|
||||
if(colSums != NULL)
|
||||
{
|
||||
for(int colIdx = 0; colIdx < matrix->cols; colIdx++)
|
||||
{
|
||||
for(int rowIdx = 0; rowIdx < matrix->rows; rowIdx++)
|
||||
{
|
||||
MatrixType expValue = exp(getMatrixAt(*matrix, rowIdx, colIdx));
|
||||
setMatrixAt(expValue, *matrix, rowIdx, colIdx);
|
||||
colSums[colIdx] += expValue;
|
||||
}
|
||||
}
|
||||
|
||||
for(int colIdx = 0; colIdx < matrix->cols; colIdx++)
|
||||
{
|
||||
for(int rowIdx = 0; rowIdx < matrix->rows; rowIdx++)
|
||||
{
|
||||
MatrixType normalizedValue = getMatrixAt(*matrix, rowIdx, colIdx) / colSums[colIdx];
|
||||
setMatrixAt(normalizedValue, *matrix, rowIdx, colIdx);
|
||||
}
|
||||
}
|
||||
free(colSums);
|
||||
if (colSums != NULL) {
|
||||
for (int colIdx = 0; colIdx < matrix->cols; colIdx++) {
|
||||
for (int rowIdx = 0; rowIdx < matrix->rows; rowIdx++) {
|
||||
MatrixType expValue = exp(getMatrixAt(*matrix, rowIdx, colIdx));
|
||||
setMatrixAt(expValue, *matrix, rowIdx, colIdx);
|
||||
colSums[colIdx] += expValue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void relu(Matrix *matrix)
|
||||
{
|
||||
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||
{
|
||||
matrix->buffer[i] = matrix->buffer[i] >= 0 ? matrix->buffer[i] : 0;
|
||||
}
|
||||
}
|
||||
|
||||
static int checkFileHeader(FILE *file)
|
||||
{
|
||||
int isValid = 0;
|
||||
int fileHeaderLen = strlen(FILE_HEADER_STRING);
|
||||
char buffer[BUFFER_SIZE] = {0};
|
||||
|
||||
if(BUFFER_SIZE-1 < fileHeaderLen)
|
||||
fileHeaderLen = BUFFER_SIZE-1;
|
||||
|
||||
if(fread(buffer, sizeof(char), fileHeaderLen, file) == fileHeaderLen)
|
||||
isValid = strcmp(buffer, FILE_HEADER_STRING) == 0;
|
||||
|
||||
return isValid;
|
||||
}
|
||||
|
||||
static unsigned int readDimension(FILE *file)
|
||||
{
|
||||
int dimension = 0;
|
||||
|
||||
if(fread(&dimension, sizeof(int), 1, file) != 1)
|
||||
dimension = 0;
|
||||
|
||||
return dimension;
|
||||
}
|
||||
|
||||
static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols)
|
||||
{
|
||||
Matrix matrix = createMatrix(rows, cols);
|
||||
|
||||
if(matrix.buffer != NULL)
|
||||
{
|
||||
if(fread(matrix.buffer, sizeof(MatrixType), rows*cols, file) != rows*cols)
|
||||
clearMatrix(&matrix);
|
||||
}
|
||||
|
||||
return matrix;
|
||||
}
|
||||
|
||||
static Layer readLayer(FILE *file, unsigned int inputDimension, unsigned int outputDimension)
|
||||
{
|
||||
Layer layer;
|
||||
layer.weights = readMatrix(file, outputDimension, inputDimension);
|
||||
layer.biases = readMatrix(file, outputDimension, 1);
|
||||
|
||||
return layer;
|
||||
}
|
||||
|
||||
static int isEmptyLayer(const Layer layer)
|
||||
{
|
||||
return layer.biases.cols == 0 || layer.biases.rows == 0 || layer.biases.buffer == NULL || layer.weights.rows == 0 || layer.weights.cols == 0 || layer.weights.buffer == NULL;
|
||||
}
|
||||
|
||||
static void clearLayer(Layer *layer)
|
||||
{
|
||||
if(layer != NULL)
|
||||
{
|
||||
clearMatrix(&layer->weights);
|
||||
clearMatrix(&layer->biases);
|
||||
layer->activation = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static void assignActivations(NeuralNetwork model)
|
||||
{
|
||||
for(int i = 0; i < (int)model.numberOfLayers-1; i++)
|
||||
{
|
||||
model.layers[i].activation = relu;
|
||||
}
|
||||
|
||||
if(model.numberOfLayers > 0)
|
||||
model.layers[model.numberOfLayers-1].activation = softmax;
|
||||
}
|
||||
|
||||
NeuralNetwork loadModel(const char *path)
|
||||
{
|
||||
NeuralNetwork model = {NULL, 0};
|
||||
FILE *file = fopen(path, "rb");
|
||||
|
||||
if(file != NULL)
|
||||
{
|
||||
if(checkFileHeader(file))
|
||||
{
|
||||
unsigned int inputDimension = readDimension(file);
|
||||
unsigned int outputDimension = readDimension(file);
|
||||
|
||||
while(inputDimension > 0 && outputDimension > 0)
|
||||
{
|
||||
Layer layer = readLayer(file, inputDimension, outputDimension);
|
||||
Layer *layerBuffer = NULL;
|
||||
|
||||
if(isEmptyLayer(layer))
|
||||
{
|
||||
clearLayer(&layer);
|
||||
clearModel(&model);
|
||||
break;
|
||||
}
|
||||
|
||||
layerBuffer = (Layer *)realloc(model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
|
||||
|
||||
if(layerBuffer != NULL)
|
||||
model.layers = layerBuffer;
|
||||
else
|
||||
{
|
||||
clearModel(&model);
|
||||
break;
|
||||
}
|
||||
|
||||
model.layers[model.numberOfLayers] = layer;
|
||||
model.numberOfLayers++;
|
||||
|
||||
inputDimension = outputDimension;
|
||||
outputDimension = readDimension(file);
|
||||
}
|
||||
for (int colIdx = 0; colIdx < matrix->cols; colIdx++) {
|
||||
for (int rowIdx = 0; rowIdx < matrix->rows; rowIdx++) {
|
||||
MatrixType normalizedValue =
|
||||
getMatrixAt(*matrix, rowIdx, colIdx) / colSums[colIdx];
|
||||
setMatrixAt(normalizedValue, *matrix, rowIdx, colIdx);
|
||||
}
|
||||
fclose(file);
|
||||
|
||||
assignActivations(model);
|
||||
}
|
||||
free(colSums);
|
||||
}
|
||||
|
||||
return model;
|
||||
}
|
||||
}
|
||||
|
||||
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
|
||||
{
|
||||
Matrix matrix = {NULL, 0, 0};
|
||||
static void relu(Matrix *matrix) {
|
||||
for (int i = 0; i < matrix->rows * matrix->cols; i++) {
|
||||
matrix->buffer[i] = matrix->buffer[i] >= 0 ? matrix->buffer[i] : 0;
|
||||
}
|
||||
}
|
||||
|
||||
if(count > 0 && images != NULL)
|
||||
{
|
||||
matrix = createMatrix(images[0].height * images[0].width, count);
|
||||
static int checkFileHeader(FILE *file) {
|
||||
int isValid = 0;
|
||||
int fileHeaderLen = strlen(FILE_HEADER_STRING);
|
||||
char buffer[BUFFER_SIZE] = {0};
|
||||
|
||||
if(matrix.buffer != NULL)
|
||||
{
|
||||
for(int i = 0; i < count; i++)
|
||||
{
|
||||
for(int j = 0; j < images[i].width * images[i].height; j++)
|
||||
{
|
||||
setMatrixAt((MatrixType)images[i].buffer[j], matrix, j, i);
|
||||
}
|
||||
}
|
||||
if (BUFFER_SIZE - 1 < fileHeaderLen)
|
||||
fileHeaderLen = BUFFER_SIZE - 1;
|
||||
|
||||
if (fread(buffer, sizeof(char), fileHeaderLen, file) == fileHeaderLen)
|
||||
isValid = strcmp(buffer, FILE_HEADER_STRING) == 0;
|
||||
|
||||
return isValid;
|
||||
}
|
||||
|
||||
static unsigned int readDimension(FILE *file) {
|
||||
int dimension = 0;
|
||||
|
||||
if (fread(&dimension, sizeof(int), 1, file) != 1)
|
||||
dimension = 0;
|
||||
|
||||
return dimension;
|
||||
}
|
||||
|
||||
static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols) {
|
||||
Matrix matrix = createMatrix(rows, cols);
|
||||
|
||||
if (matrix.buffer != NULL) {
|
||||
if (fread(matrix.buffer, sizeof(MatrixType), rows * cols, file) !=
|
||||
rows * cols)
|
||||
clearMatrix(&matrix);
|
||||
}
|
||||
|
||||
return matrix;
|
||||
}
|
||||
|
||||
static Layer readLayer(FILE *file, unsigned int inputDimension,
|
||||
unsigned int outputDimension) {
|
||||
Layer layer;
|
||||
layer.weights = readMatrix(file, outputDimension, inputDimension);
|
||||
layer.biases = readMatrix(file, outputDimension, 1);
|
||||
|
||||
return layer;
|
||||
}
|
||||
|
||||
static int isEmptyLayer(const Layer layer) {
|
||||
return layer.biases.cols == 0 || layer.biases.rows == 0 ||
|
||||
layer.biases.buffer == NULL || layer.weights.rows == 0 ||
|
||||
layer.weights.cols == 0 || layer.weights.buffer == NULL;
|
||||
}
|
||||
|
||||
static void clearLayer(Layer *layer) {
|
||||
if (layer != NULL) {
|
||||
clearMatrix(&layer->weights);
|
||||
clearMatrix(&layer->biases);
|
||||
layer->activation = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static void assignActivations(NeuralNetwork model) {
|
||||
for (int i = 0; i < (int)model.numberOfLayers - 1; i++) {
|
||||
model.layers[i].activation = relu;
|
||||
}
|
||||
|
||||
if (model.numberOfLayers > 0)
|
||||
model.layers[model.numberOfLayers - 1].activation = softmax;
|
||||
}
|
||||
|
||||
NeuralNetwork loadModel(const char *path) {
|
||||
NeuralNetwork model = {NULL, 0};
|
||||
FILE *file = fopen(path, "rb");
|
||||
|
||||
if (file != NULL) {
|
||||
if (checkFileHeader(file)) {
|
||||
unsigned int inputDimension = readDimension(file);
|
||||
unsigned int outputDimension = readDimension(file);
|
||||
|
||||
while (inputDimension > 0 && outputDimension > 0) {
|
||||
Layer layer = readLayer(file, inputDimension, outputDimension);
|
||||
Layer *layerBuffer = NULL;
|
||||
|
||||
if (isEmptyLayer(layer)) {
|
||||
clearLayer(&layer);
|
||||
clearModel(&model);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return matrix;
|
||||
}
|
||||
layerBuffer = (Layer *)realloc(
|
||||
model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
|
||||
|
||||
static Matrix forward(const NeuralNetwork model, Matrix inputBatch)
|
||||
{
|
||||
Matrix result = inputBatch;
|
||||
|
||||
if(result.buffer != NULL)
|
||||
{
|
||||
for(int i = 0; i < model.numberOfLayers; i++)
|
||||
{
|
||||
Matrix biasResult;
|
||||
Matrix weightResult;
|
||||
|
||||
weightResult = multiply(model.layers[i].weights, result);
|
||||
clearMatrix(&result);
|
||||
biasResult = add(model.layers[i].biases, weightResult);
|
||||
clearMatrix(&weightResult);
|
||||
|
||||
if(model.layers[i].activation != NULL)
|
||||
model.layers[i].activation(&biasResult);
|
||||
result = biasResult;
|
||||
if (layerBuffer != NULL)
|
||||
model.layers = layerBuffer;
|
||||
else {
|
||||
clearModel(&model);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
model.layers[model.numberOfLayers] = layer;
|
||||
model.numberOfLayers++;
|
||||
|
||||
inputDimension = outputDimension;
|
||||
outputDimension = readDimension(file);
|
||||
}
|
||||
}
|
||||
fclose(file);
|
||||
|
||||
assignActivations(model);
|
||||
}
|
||||
|
||||
return model;
|
||||
}
|
||||
|
||||
unsigned char *argmax(const Matrix matrix)
|
||||
{
|
||||
unsigned char *maxIdx = NULL;
|
||||
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[],
|
||||
unsigned int count) {
|
||||
Matrix matrix = {0, 0, NULL}; // falsch herum
|
||||
|
||||
if(matrix.rows > 0 && matrix.cols > 0)
|
||||
{
|
||||
maxIdx = (unsigned char *)malloc(sizeof(unsigned char) * matrix.cols);
|
||||
if (count > 0 && images != NULL) {
|
||||
matrix = createMatrix(images[0].height * images[0].width, count);
|
||||
|
||||
if(maxIdx != NULL)
|
||||
{
|
||||
for(int colIdx = 0; colIdx < matrix.cols; colIdx++)
|
||||
{
|
||||
maxIdx[colIdx] = 0;
|
||||
|
||||
for(int rowIdx = 1; rowIdx < matrix.rows; rowIdx++)
|
||||
{
|
||||
if(getMatrixAt(matrix, rowIdx, colIdx) > getMatrixAt(matrix, maxIdx[colIdx], colIdx))
|
||||
maxIdx[colIdx] = rowIdx;
|
||||
}
|
||||
}
|
||||
if (matrix.buffer != NULL) {
|
||||
for (int i = 0; i < count; i++) {
|
||||
for (int j = 0; j < images[i].width * images[i].height; j++) {
|
||||
setMatrixAt((MatrixType)images[i].buffer[j], matrix, j, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return maxIdx;
|
||||
return matrix;
|
||||
}
|
||||
|
||||
unsigned char *predict(const NeuralNetwork model, const GrayScaleImage images[], unsigned int numberOfImages)
|
||||
{
|
||||
Matrix inputBatch = imageBatchToMatrixOfImageVectors(images, numberOfImages);
|
||||
Matrix outputBatch = forward(model, inputBatch);
|
||||
static Matrix forward(const NeuralNetwork model, Matrix inputBatch) {
|
||||
Matrix result = inputBatch;
|
||||
|
||||
unsigned char *result = argmax(outputBatch);
|
||||
|
||||
clearMatrix(&outputBatch);
|
||||
|
||||
return result;
|
||||
if (result.buffer != NULL) {
|
||||
for (int i = 0; i < model.numberOfLayers; i++) {
|
||||
Matrix biasResult;
|
||||
Matrix weightResult;
|
||||
|
||||
weightResult = multiply(model.layers[i].weights, result);
|
||||
clearMatrix(&result);
|
||||
biasResult = add(model.layers[i].biases, weightResult);
|
||||
clearMatrix(&weightResult);
|
||||
|
||||
if (model.layers[i].activation != NULL)
|
||||
model.layers[i].activation(&biasResult);
|
||||
result = biasResult;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void clearModel(NeuralNetwork *model)
|
||||
{
|
||||
if(model != NULL)
|
||||
{
|
||||
for(int i = 0; i < model->numberOfLayers; i++)
|
||||
{
|
||||
clearLayer(&model->layers[i]);
|
||||
unsigned char *argmax(const Matrix matrix) {
|
||||
unsigned char *maxIdx = NULL;
|
||||
|
||||
if (matrix.rows > 0 && matrix.cols > 0) {
|
||||
maxIdx = (unsigned char *)malloc(sizeof(unsigned char) * matrix.cols);
|
||||
|
||||
if (maxIdx != NULL) {
|
||||
for (int colIdx = 0; colIdx < matrix.cols; colIdx++) {
|
||||
maxIdx[colIdx] = 0;
|
||||
|
||||
for (int rowIdx = 1; rowIdx < matrix.rows; rowIdx++) {
|
||||
if (getMatrixAt(matrix, rowIdx, colIdx) >
|
||||
getMatrixAt(matrix, maxIdx[colIdx], colIdx))
|
||||
maxIdx[colIdx] = rowIdx;
|
||||
}
|
||||
model->layers = NULL;
|
||||
model->numberOfLayers = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return maxIdx;
|
||||
}
|
||||
|
||||
unsigned char *predict(const NeuralNetwork model, const GrayScaleImage images[],
|
||||
unsigned int numberOfImages) {
|
||||
Matrix inputBatch = imageBatchToMatrixOfImageVectors(images, numberOfImages);
|
||||
Matrix outputBatch = forward(model, inputBatch);
|
||||
|
||||
unsigned char *result = argmax(outputBatch);
|
||||
|
||||
clearMatrix(&outputBatch);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void clearModel(NeuralNetwork *model) {
|
||||
if (model != NULL) {
|
||||
for (int i = 0; i < model->numberOfLayers; i++) {
|
||||
clearLayer(&model->layers[i]);
|
||||
}
|
||||
model->layers = NULL;
|
||||
model->numberOfLayers = 0;
|
||||
}
|
||||
}
|
||||
@ -1,242 +1,334 @@
|
||||
#include "neuralNetwork.h"
|
||||
#include "unity.h"
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include "unity.h"
|
||||
#include "neuralNetwork.h"
|
||||
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
/*typedef struct
|
||||
{
|
||||
// TODO
|
||||
}
|
||||
Matrix weights;
|
||||
Matrix biases;
|
||||
ActivationFunctionType activation;
|
||||
} Layer;
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
typedef struct
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
||||
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
|
||||
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
|
||||
MatrixType buffer3[] = {1, 2, 3};
|
||||
MatrixType buffer4[] = {1, 2};
|
||||
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
|
||||
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
|
||||
Layer *layers;
|
||||
unsigned int numberOfLayers;
|
||||
} NeuralNetwork;*/
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
|
||||
NeuralNetwork netUnderTest;
|
||||
/*Layer: Ebene im neuronalen Netzwerk, besteht aus mehreren Neuronen
|
||||
Input-Layer: Eingabedatei
|
||||
Hidden-Layer: verarbeiten die Daten
|
||||
Output-Layer: Ergebnis
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
Gewichte: bestimmen, wie stark ein Eingangssignal auf ein Neuron wirkt
|
||||
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.numberOfLayers, netUnderTest.numberOfLayers);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
Dimension: Form der Matrizen für einen Layer*/
|
||||
|
||||
void test_loadModelReturnsCorrectWeightDimensions(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
/* Gewichtsmatrix der Layer:
|
||||
*/
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork netUnderTest;
|
||||
// speichert NeuralNetwork nn in binäre Datei->später kann es wieder geöffnet
|
||||
// werden
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) {
|
||||
FILE *fptr = fopen(path, "wb"); // Binärdatei zum Schreiben öffnen
|
||||
if (fptr == NULL)
|
||||
return; // file konnte nicht geöffnet werden
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
// Header ist Erkennungsstring am Anfang der Datei, loadmodel erkennt
|
||||
// Dateiformat
|
||||
const char header[] = "__info2_neural_network_file_format__"; // header string
|
||||
fwrite(header, sizeof(char), strlen(header),
|
||||
fptr); // der header wird am Anfang der Datei platziert
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
// Wenn es keine Layer gibt, 0 eintragen, LoadModel erkennt, dass Datei leer
|
||||
// ist
|
||||
if (nn.numberOfLayers == 0) {
|
||||
int zero = 0;
|
||||
fwrite(&zero, sizeof(int), 1, fptr);
|
||||
fclose(fptr);
|
||||
return;
|
||||
}
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
// Layer 0, inputDimension: Anzahl Input-Neuronen, outputDimension: Anzahl
|
||||
// Output-Neuronen wird in Datei eingefügt
|
||||
int inputDim = (int)nn.layers[0].weights.cols;
|
||||
int outputDim = (int)nn.layers[0].weights.rows;
|
||||
fwrite(&inputDim, sizeof(int), 1, fptr);
|
||||
fwrite(&outputDim, sizeof(int), 1, fptr);
|
||||
|
||||
void test_loadModelReturnsCorrectBiasDimensions(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
/* 3) Für jede Layer in Reihenfolge: Gewichte (output x input), Biases (output
|
||||
x 1). Zwischen Layern wird nur die nächste outputDimension (int)
|
||||
geschrieben. */
|
||||
for (int i = 0; i < nn.numberOfLayers; i++) {
|
||||
Layer layer = nn.layers[i]; // kürzer, durch alle layer iterieren
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork netUnderTest;
|
||||
int wrows = (int)layer.weights.rows;
|
||||
int wcols = (int)layer.weights.cols;
|
||||
int wcount = wrows * wcols; // Anzahl Gewichtseinträge
|
||||
int bcount =
|
||||
layer.biases.rows * layer.biases.cols; // Anzahl der Bias-Einträge
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
/* Gewichte */
|
||||
if (wcount > 0 && layer.weights.buffer != NULL) {
|
||||
fwrite(layer.weights.buffer, sizeof(MatrixType), (size_t)wcount, fptr);
|
||||
} // Gewichte werden als Matrix gespeichert
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
/* Biases */
|
||||
if (bcount > 0 && layer.biases.buffer != NULL) {
|
||||
fwrite(layer.biases.buffer, sizeof(MatrixType), (size_t)bcount, fptr);
|
||||
} // Biases werden als Vektor gespeichert
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.rows, netUnderTest.layers[0].biases.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.cols, netUnderTest.layers[0].biases.cols);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectWeights(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
||||
int n = netUnderTest.layers[0].weights.rows * netUnderTest.layers[0].weights.cols;
|
||||
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].weights.buffer, netUnderTest.layers[0].weights.buffer, n);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectBiases(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
||||
int n = netUnderTest.layers[0].biases.rows * netUnderTest.layers[0].biases.cols;
|
||||
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].biases.buffer, netUnderTest.layers[0].biases.buffer, n);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_loadModelFailsOnWrongFileTag(void)
|
||||
{
|
||||
const char *path = "some_nn_test_file.info2";
|
||||
NeuralNetwork netUnderTest;
|
||||
FILE *file = fopen(path, "wb");
|
||||
|
||||
if(file != NULL)
|
||||
{
|
||||
const char *fileTag = "info2_neural_network_file_format";
|
||||
|
||||
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
|
||||
|
||||
fclose(file);
|
||||
/* outputDimensionen der nächsten Layer */
|
||||
if (i + 1 < nn.numberOfLayers) {
|
||||
int nextOutput = (int)nn.layers[i + 1].weights.rows;
|
||||
fwrite(&nextOutput, sizeof(int), 1, fptr);
|
||||
} else {
|
||||
// loadModel erkennt 0 als Ende der Datei
|
||||
int zero = 0;
|
||||
fwrite(&zero, sizeof(int), 1, fptr);
|
||||
}
|
||||
}
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_NULL(netUnderTest.layers);
|
||||
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
||||
fclose(fptr); // Datei schließen
|
||||
}
|
||||
|
||||
void test_clearModelSetsMembersToNull(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void) {
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
||||
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
|
||||
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
|
||||
MatrixType buffer3[] = {1, 2, 3};
|
||||
MatrixType buffer4[] = {1, 2};
|
||||
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
|
||||
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights1, .biases = biases1},
|
||||
{.weights = weights2, .biases = biases2}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork netUnderTest;
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_NOT_NULL(netUnderTest.layers);
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
clearModel(&netUnderTest);
|
||||
TEST_ASSERT_NULL(netUnderTest.layers);
|
||||
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.numberOfLayers,
|
||||
netUnderTest.numberOfLayers);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
static void someActivation(Matrix *matrix)
|
||||
{
|
||||
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||
{
|
||||
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
||||
}
|
||||
void test_loadModelReturnsCorrectWeightDimensions(void) {
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows,
|
||||
netUnderTest.layers[0].weights.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols,
|
||||
netUnderTest.layers[0].weights.cols);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_predictReturnsCorrectLabels(void)
|
||||
{
|
||||
const unsigned char expectedLabels[] = {4, 2};
|
||||
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
||||
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
||||
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
|
||||
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
||||
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
||||
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
||||
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
|
||||
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
|
||||
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
|
||||
MatrixType biasBuffer1[] = {200, 0};
|
||||
MatrixType biasBuffer2[] = {0, -100, 0};
|
||||
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
||||
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
||||
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
||||
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
||||
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
||||
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
||||
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||
TEST_ASSERT_NOT_NULL(predictedLabels);
|
||||
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
||||
TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n);
|
||||
free(predictedLabels);
|
||||
void test_loadModelReturnsCorrectBiasDimensions(void) {
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.rows,
|
||||
netUnderTest.layers[0].biases.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.cols,
|
||||
netUnderTest.layers[0].biases.cols);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectWeights(void) {
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows,
|
||||
netUnderTest.layers[0].weights.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols,
|
||||
netUnderTest.layers[0].weights.cols);
|
||||
int n =
|
||||
netUnderTest.layers[0].weights.rows * netUnderTest.layers[0].weights.cols;
|
||||
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].weights.buffer,
|
||||
netUnderTest.layers[0].weights.buffer, n);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectBiases(void) {
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows,
|
||||
netUnderTest.layers[0].weights.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols,
|
||||
netUnderTest.layers[0].weights.cols);
|
||||
int n =
|
||||
netUnderTest.layers[0].biases.rows * netUnderTest.layers[0].biases.cols;
|
||||
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].biases.buffer,
|
||||
netUnderTest.layers[0].biases.buffer, n);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_loadModelFailsOnWrongFileTag(void) {
|
||||
const char *path = "some_nn_test_file.info2";
|
||||
NeuralNetwork netUnderTest;
|
||||
FILE *file = fopen(path, "wb");
|
||||
|
||||
if (file != NULL) {
|
||||
const char *fileTag = "info2_neural_network_file_format";
|
||||
|
||||
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
|
||||
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_NULL(netUnderTest.layers);
|
||||
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
||||
}
|
||||
|
||||
void test_clearModelSetsMembersToNull(void) {
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_NOT_NULL(netUnderTest.layers);
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
clearModel(&netUnderTest);
|
||||
TEST_ASSERT_NULL(netUnderTest.layers);
|
||||
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
||||
}
|
||||
|
||||
static void someActivation(Matrix *matrix) {
|
||||
for (int i = 0; i < matrix->rows * matrix->cols; i++) {
|
||||
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void test_predictReturnsCorrectLabels(void) {
|
||||
const unsigned char expectedLabels[] = {4, 2};
|
||||
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
||||
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
||||
GrayScaleImage inputImages[] = {
|
||||
{.buffer = imageBuffer1, .width = 2, .height = 2},
|
||||
{.buffer = imageBuffer2, .width = 2, .height = 2}};
|
||||
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
||||
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
||||
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22,
|
||||
23, -24, 25, 26, 27, -28, -29};
|
||||
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
|
||||
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
|
||||
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
|
||||
MatrixType biasBuffer1[] = {200, 0};
|
||||
MatrixType biasBuffer2[] = {0, -100, 0};
|
||||
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
||||
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
|
||||
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
|
||||
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
|
||||
Layer layers[] = {
|
||||
{.weights = weights1, .biases = biases1, .activation = someActivation},
|
||||
{.weights = weights2, .biases = biases2, .activation = someActivation},
|
||||
{.weights = weights3, .biases = biases3, .activation = someActivation}};
|
||||
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
|
||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||
TEST_ASSERT_NOT_NULL(predictedLabels);
|
||||
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
||||
TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n);
|
||||
free(predictedLabels);
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void) {
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
UNITY_BEGIN();
|
||||
int main() {
|
||||
UNITY_BEGIN();
|
||||
|
||||
printf("\n============================\nNeural network tests\n============================\n");
|
||||
RUN_TEST(test_loadModelReturnsCorrectNumberOfLayers);
|
||||
RUN_TEST(test_loadModelReturnsCorrectWeightDimensions);
|
||||
RUN_TEST(test_loadModelReturnsCorrectBiasDimensions);
|
||||
RUN_TEST(test_loadModelReturnsCorrectWeights);
|
||||
RUN_TEST(test_loadModelReturnsCorrectBiases);
|
||||
RUN_TEST(test_loadModelFailsOnWrongFileTag);
|
||||
RUN_TEST(test_clearModelSetsMembersToNull);
|
||||
RUN_TEST(test_predictReturnsCorrectLabels);
|
||||
printf("\n============================\nNeural network "
|
||||
"tests\n============================\n");
|
||||
RUN_TEST(test_loadModelReturnsCorrectNumberOfLayers);
|
||||
RUN_TEST(test_loadModelReturnsCorrectWeightDimensions);
|
||||
RUN_TEST(test_loadModelReturnsCorrectBiasDimensions);
|
||||
RUN_TEST(test_loadModelReturnsCorrectWeights);
|
||||
RUN_TEST(test_loadModelReturnsCorrectBiases);
|
||||
RUN_TEST(test_loadModelFailsOnWrongFileTag);
|
||||
RUN_TEST(test_clearModelSetsMembersToNull);
|
||||
RUN_TEST(test_predictReturnsCorrectLabels);
|
||||
|
||||
return UNITY_END();
|
||||
return UNITY_END();
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user