Compare commits
10 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| e974c7898b | |||
| 1e990f306b | |||
| a940dbaf55 | |||
| 3f218ef2de | |||
| b2408e6f82 | |||
| 8e67db0dd0 | |||
| ecbb95a6c0 | |||
| 2897a9f2a4 | |||
| 84ef6ad220 | |||
| d0fe0e638d |
142
imageInput.c
142
imageInput.c
@ -6,17 +6,149 @@
|
||||
#define BUFFER_SIZE 100
|
||||
#define FILE_HEADER_STRING "__info2_image_file_format__"
|
||||
|
||||
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
||||
// Hilfsfunktion: File Header überprüfen
|
||||
static int checkFileHeader(FILE* f) {
|
||||
char buffer[BUFFER_SIZE];
|
||||
size_t len = strlen(FILE_HEADER_STRING);
|
||||
|
||||
if (fread(buffer, 1, len, f) != len) {
|
||||
return -1; // Fehler beim Lesen
|
||||
}
|
||||
|
||||
buffer[len] = '\0';
|
||||
return strcmp(buffer, FILE_HEADER_STRING) == 0 ? 0 : -1;
|
||||
}
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
||||
// Hilfsfunktion: Metadaten lesen (Anzahl, Breite, Höhe)
|
||||
static int readImageMeta(FILE* f, unsigned short* count, unsigned short* width, unsigned short* height) {
|
||||
if (fread(count, sizeof(unsigned short), 1, f) != 1) return -1;
|
||||
if (fread(width, sizeof(unsigned short), 1, f) != 1) return -1;
|
||||
if (fread(height, sizeof(unsigned short), 1, f) != 1) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Hilfsfunktion: Ein einzelnes Bild einlesen (NUR Pixel, OHNE Label)
|
||||
static GrayScaleImage readSingleImage(FILE* f, unsigned short width, unsigned short height) {
|
||||
GrayScaleImage img;
|
||||
|
||||
// Breite und Höhe setzen
|
||||
img.width = width;
|
||||
img.height = height;
|
||||
|
||||
// Speicher für Pixel reservieren
|
||||
size_t pixelCount = (size_t)width * (size_t)height;
|
||||
img.buffer = malloc(pixelCount * sizeof(GrayScalePixelType));
|
||||
|
||||
if (img.buffer == NULL) {
|
||||
// Fehlerfall: kein Speicher
|
||||
img.width = 0;
|
||||
img.height = 0;
|
||||
return img;
|
||||
}
|
||||
|
||||
// Pixeldaten einlesen
|
||||
if (fread(img.buffer, sizeof(GrayScalePixelType), pixelCount, f) != pixelCount) {
|
||||
// Fehler beim Lesen: Speicher freigeben
|
||||
free(img.buffer);
|
||||
img.buffer = NULL;
|
||||
img.width = 0;
|
||||
img.height = 0;
|
||||
}
|
||||
|
||||
return img;
|
||||
}
|
||||
|
||||
// Hauptfunktion: Bildserie aus Datei lesen
|
||||
GrayScaleImageSeries *readImages(const char *path)
|
||||
{
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
|
||||
FILE *f = fopen(path, "rb");
|
||||
if (f == NULL) {
|
||||
return NULL; // Datei konnte nicht geöffnet werden
|
||||
}
|
||||
|
||||
// 1. Header prüfen
|
||||
if (checkFileHeader(f) != 0) {
|
||||
fclose(f);
|
||||
return NULL; // falsches Dateiformat
|
||||
}
|
||||
|
||||
// 2. Metadaten lesen (Anzahl, Breite, Höhe)
|
||||
unsigned short count, width, height;
|
||||
if (readImageMeta(f, &count, &width, &height) != 0) {
|
||||
fclose(f);
|
||||
return NULL; // Metadaten konnten nicht gelesen werden
|
||||
}
|
||||
|
||||
// 3. Speicher für Serie reservieren
|
||||
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
|
||||
if (series == NULL) {
|
||||
fclose(f);
|
||||
return NULL; // Speicherfehler
|
||||
}
|
||||
|
||||
series->count = count;
|
||||
series->images = malloc(count * sizeof(GrayScaleImage));
|
||||
series->labels = malloc(count * sizeof(unsigned char));
|
||||
|
||||
if (series->images == NULL || series->labels == NULL) {
|
||||
free(series->images);
|
||||
free(series->labels);
|
||||
free(series);
|
||||
fclose(f);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// 4. Bilder + Labels einlesen
|
||||
for (unsigned short i = 0; i < count; i++) {
|
||||
// Bild einlesen
|
||||
series->images[i] = readSingleImage(f, width, height);
|
||||
|
||||
// Prüfen ob Bild erfolgreich gelesen wurde
|
||||
if (series->images[i].buffer == NULL) {
|
||||
// Fehler beim Bild-Lesen → Serie freigeben
|
||||
clearSeries(series);
|
||||
fclose(f);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Label einlesen
|
||||
if (fread(&series->labels[i], sizeof(unsigned char), 1, f) != 1) {
|
||||
// Fehler beim Label-Lesen → Serie freigeben
|
||||
clearSeries(series);
|
||||
fclose(f);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
fclose(f);
|
||||
return series;
|
||||
}
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
||||
// Funktion: Bildserie vollständig aus dem Speicher freigeben
|
||||
void clearSeries(GrayScaleImageSeries *series)
|
||||
{
|
||||
if (series == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Alle einzelnen Bilder freigeben
|
||||
if (series->images != NULL) {
|
||||
for (unsigned int i = 0; i < series->count; i++) {
|
||||
if (series->images[i].buffer != NULL) {
|
||||
free(series->images[i].buffer);
|
||||
series->images[i].buffer = NULL;
|
||||
}
|
||||
}
|
||||
free(series->images);
|
||||
series->images = NULL;
|
||||
}
|
||||
|
||||
// Labels-Array freigeben
|
||||
if (series->labels != NULL) {
|
||||
free(series->labels);
|
||||
series->labels = NULL;
|
||||
}
|
||||
|
||||
// Die Serie selbst freigeben
|
||||
free(series);
|
||||
}
|
||||
114
matrix.c
114
matrix.c
@ -3,33 +3,137 @@
|
||||
#include "matrix.h"
|
||||
|
||||
// TODO Matrix-Funktionen implementieren
|
||||
|
||||
// Matrix erstellen
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
||||
{
|
||||
|
||||
}
|
||||
// Falls eine Matrix eine Null Dimension hat leere Matrix ausgeben
|
||||
if (rows ==0 || cols == 0){
|
||||
Matrix empty = {0, 0, NULL};
|
||||
return empty;
|
||||
}
|
||||
|
||||
Matrix matrix;
|
||||
matrix.rows = rows;
|
||||
matrix.cols = cols;
|
||||
// Speicher erstellen und nullsetzen
|
||||
matrix.buffer = (MatrixType *)calloc(rows * cols, sizeof(MatrixType));
|
||||
|
||||
return matrix;
|
||||
}
|
||||
// Matrix Speicher freigeben
|
||||
void clearMatrix(Matrix *matrix)
|
||||
{
|
||||
|
||||
if (matrix != NULL && matrix->buffer != NULL) {
|
||||
free(matrix->buffer);
|
||||
matrix->buffer = NULL;
|
||||
matrix->rows = 0;
|
||||
matrix->cols = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Matrix muss von 2D in 1D umgewandelt werden deswegen (Zeile* Anzahl Spalten + Spalte)
|
||||
// um an entsprechende Speicheradresse zu kommen
|
||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
|
||||
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
||||
}
|
||||
|
||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
// Prüfen ob Indizes im gültigen Bereich sind
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Prüfen ob was im Buffer ist
|
||||
if (matrix.buffer == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return matrix.buffer[rowIdx * matrix.cols + colIdx];
|
||||
}
|
||||
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
// Broadcasting Fall 1: matrix1 ist ein Spaltenvektor
|
||||
if (matrix1.cols == 1 && matrix1.rows == matrix2.rows) {
|
||||
// Neue Matrix mit passender Dimension erstellen
|
||||
Matrix result = createMatrix(matrix2.rows, matrix2.cols);
|
||||
|
||||
// Vektor zu jeder Spalte addieren
|
||||
for (unsigned int i = 0; i < result.rows; i++) {
|
||||
for (unsigned int j = 0; j < result.cols; j++) {
|
||||
MatrixType vectorValue = getMatrixAt(matrix1, i, 0);
|
||||
MatrixType matrixValue = getMatrixAt(matrix2, i, j);
|
||||
setMatrixAt(vectorValue + matrixValue, result, i, j);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// Broadcasting Fall 2: matrix2 ist ein Spaltenvektor
|
||||
else if (matrix2.cols == 1 && matrix2.rows == matrix1.rows) {
|
||||
// Neue Matrix mit passender Dimension erstellen
|
||||
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
||||
|
||||
// Vektor zu jeder Spalte addieren
|
||||
for (unsigned int i = 0; i < result.rows; i++) {
|
||||
for (unsigned int j = 0; j < result.cols; j++) {
|
||||
MatrixType matrixValue = getMatrixAt(matrix1, i, j);
|
||||
MatrixType vectorValue = getMatrixAt(matrix2, i, 0);
|
||||
setMatrixAt(matrixValue + vectorValue, result, i, j);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// Normale elementweise Addition: Dimensionen müssen übereinstimmen
|
||||
else if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols) {
|
||||
// Neue Matrix mit passender Dimension erstellen
|
||||
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
||||
|
||||
// Alle Elemente einzeln addieren
|
||||
for (unsigned int i = 0; i < matrix1.rows * matrix1.cols; i++) {
|
||||
result.buffer[i] = matrix1.buffer[i] + matrix2.buffer[i];
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Fehlerfall: Dimensionen passen nicht
|
||||
else {
|
||||
Matrix empty = {0, 0, NULL};
|
||||
return empty;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
// Prüfen ob Matrizen multipiziert werden können
|
||||
if (matrix1.cols != matrix2.rows) {
|
||||
// Fehlerfall: Leere Matrix zurückgeben
|
||||
Matrix empty = {0, 0, NULL};
|
||||
return empty;
|
||||
}
|
||||
// Neue Matrix mit passender Dimension erstellen
|
||||
Matrix result = createMatrix(matrix1.rows, matrix2.cols);
|
||||
|
||||
// Matrix-Multiplikation durchführen
|
||||
for (unsigned int i = 0; i < result.rows; i++) {
|
||||
for (unsigned int j = 0; j < result.cols; j++) {
|
||||
MatrixType sum = 0.0;
|
||||
|
||||
// Skalarprodukt der i-ten Zeile mit j-ter Spalte
|
||||
for (unsigned int k = 0; k < matrix1.cols; k++) {
|
||||
MatrixType a = getMatrixAt(matrix1, i, k);
|
||||
MatrixType b = getMatrixAt(matrix2, k, j);
|
||||
sum += a * b;
|
||||
}
|
||||
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
|
||||
}
|
||||
7
matrix.h
7
matrix.h
@ -6,6 +6,13 @@
|
||||
typedef float MatrixType;
|
||||
|
||||
// TODO Matrixtyp definieren
|
||||
typedef struct
|
||||
{
|
||||
int rows;
|
||||
int cols;
|
||||
float *buffer;
|
||||
|
||||
} Matrix;
|
||||
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
||||
|
||||
@ -8,7 +8,43 @@
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
// TODO
|
||||
FILE *file = fopen(path, "wb");
|
||||
if (file == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Magic String direkt schreiben
|
||||
const char *header = "__info2_neural_network_file_format__";
|
||||
fwrite(header, sizeof(char), strlen(header), file);
|
||||
|
||||
// Erste inputDimension schreiben (vom ersten Layer)
|
||||
if (nn.numberOfLayers > 0) {
|
||||
unsigned int inputDim = nn.layers[0].weights.cols;
|
||||
fwrite(&inputDim, sizeof(unsigned int), 1, file);
|
||||
}
|
||||
|
||||
// Für jeden Layer: outputDimension, weights und biases schreiben
|
||||
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
|
||||
Layer layer = nn.layers[i];
|
||||
|
||||
// Output-Dimension dieses Layers schreiben
|
||||
unsigned int outputDim = layer.weights.rows;
|
||||
fwrite(&outputDim, sizeof(unsigned int), 1, file);
|
||||
|
||||
// Weights schreiben (alle Daten)
|
||||
unsigned int weightSize = layer.weights.rows * layer.weights.cols;
|
||||
fwrite(layer.weights.buffer, sizeof(MatrixType), weightSize, file);
|
||||
|
||||
// Biases schreiben (alle Daten)
|
||||
unsigned int biasSize = layer.biases.rows * layer.biases.cols;
|
||||
fwrite(layer.biases.buffer, sizeof(MatrixType), biasSize, file);
|
||||
}
|
||||
|
||||
// Endmarkierung schreiben (0 als nächste outputDimension)
|
||||
unsigned int endMarker = 0;
|
||||
fwrite(&endMarker, sizeof(unsigned int), 1, file);
|
||||
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user