Compare commits
18 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e17eaf4542 | ||
|
|
6c26652744 | ||
|
|
5d8dbd548b | ||
|
|
225dbac29f | ||
|
|
c476386ff3 | ||
|
|
a031bb0b7a | ||
|
|
545acd0356 | ||
|
|
934ba2d06e | ||
|
|
8c2ed38abf | ||
|
|
86359bb37f | ||
|
|
807bbbd375 | ||
|
|
8ac27e20c5 | ||
|
|
e3349f7f68 | ||
|
|
9817c87e7a | ||
|
|
8c98197327 | ||
|
|
8368439db1 | ||
|
|
c1db7c612f | ||
|
|
97bf884e59 |
81
imageInput.c
81
imageInput.c
@ -5,18 +5,95 @@
|
||||
|
||||
#define BUFFER_SIZE 100
|
||||
#define FILE_HEADER_STRING "__info2_image_file_format__"
|
||||
#define FILE_HEADER_SIZE (sizeof(FILE_HEADER_STRING)-1)
|
||||
|
||||
|
||||
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
||||
FILE *checkFile(const char *path)
|
||||
{
|
||||
FILE *datei = fopen(path,"rb");
|
||||
if (datei == NULL)
|
||||
{
|
||||
perror("Datei konnte nicht geoeffnet werden");
|
||||
return NULL;
|
||||
}
|
||||
char buffer[FILE_HEADER_SIZE+1];
|
||||
if (fread(buffer,1,FILE_HEADER_SIZE,datei)!=FILE_HEADER_SIZE)
|
||||
{
|
||||
perror("Header konnte nicht eingelessen werden");
|
||||
fclose(datei);
|
||||
return NULL;
|
||||
}
|
||||
buffer[FILE_HEADER_SIZE] = '\0';
|
||||
if (strcmp(buffer,FILE_HEADER_STRING)!=0)
|
||||
{
|
||||
printf("Falscher Dateikopf");
|
||||
//printf("\n%s",buffer);
|
||||
//printf("\n%s",FILE_HEADER_STRING);
|
||||
//printf("\n%d",strcmp(buffer,FILE_HEADER_STRING));
|
||||
fclose(datei);
|
||||
return NULL;
|
||||
}
|
||||
return datei;
|
||||
}
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
||||
GrayScaleImageSeries *readImages(const char *path)
|
||||
{
|
||||
FILE *datei = checkFile(path);
|
||||
if (datei==NULL)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
unsigned short image_count, width, height;
|
||||
fread(&image_count,sizeof(unsigned short),1,datei);
|
||||
fread(&width,sizeof(unsigned short),1,datei);
|
||||
fread(&height,sizeof(unsigned short),1,datei);
|
||||
//printf("%u Bilder und %u mal %u",image_count,width,height);
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
|
||||
series = malloc(sizeof(GrayScaleImageSeries));
|
||||
series->count = image_count;
|
||||
series->images = malloc(image_count*sizeof(GrayScaleImage));
|
||||
series->labels = malloc(image_count*sizeof(unsigned char));
|
||||
for(unsigned short i = 0;i<image_count;i++)
|
||||
{
|
||||
series->images[i].width = width;
|
||||
series->images[i].height = height;
|
||||
series->images[i].buffer = malloc(width*height);
|
||||
}
|
||||
for(unsigned short i = 0;i<image_count;i++)
|
||||
{
|
||||
for (unsigned int j=0;j<(width*height);j++)
|
||||
{
|
||||
fread(&series->images[i].buffer[j],1,1,datei);
|
||||
}
|
||||
fread(&series->labels[i],1,1,datei);
|
||||
//printf("%d\n",series->labels[i]);
|
||||
}
|
||||
fclose(datei);
|
||||
|
||||
return series;
|
||||
|
||||
}
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
||||
void clearSeries(GrayScaleImageSeries *series)
|
||||
{
|
||||
}
|
||||
if(series == NULL)
|
||||
{
|
||||
printf("Serie nicht vorhanden\n");
|
||||
return;
|
||||
}
|
||||
|
||||
unsigned short anzahl = series->count;
|
||||
for(unsigned short i = 0;i<anzahl;i++)
|
||||
{
|
||||
free(series->images[i].buffer );
|
||||
}
|
||||
free(series->images);
|
||||
free(series->labels);
|
||||
free(series);
|
||||
printf("Serie freigegeben\n");
|
||||
return;
|
||||
|
||||
}
|
||||
|
||||
@ -19,5 +19,5 @@ typedef struct
|
||||
|
||||
GrayScaleImageSeries *readImages(const char *path);
|
||||
void clearSeries(GrayScaleImageSeries *series);
|
||||
|
||||
FILE *checkFile(const char *path);
|
||||
#endif
|
||||
|
||||
@ -54,7 +54,7 @@ void test_readImagesReturnsCorrectImageWidth(void)
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const unsigned short expectedWidth = 10;
|
||||
const char *path = "testFile.info2";
|
||||
prepareImageFile(path, 8, expectedWidth, 2, 1);
|
||||
prepareImageFile(path, expectedWidth, 8, 2, 1);
|
||||
series = readImages(path);
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->images);
|
||||
@ -70,7 +70,7 @@ void test_readImagesReturnsCorrectImageHeight(void)
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const unsigned short expectedHeight = 10;
|
||||
const char *path = "testFile.info2";
|
||||
prepareImageFile(path, expectedHeight, 8, 2, 1);
|
||||
prepareImageFile(path,8, expectedHeight, 2, 1);
|
||||
series = readImages(path);
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->images);
|
||||
|
||||
8
main.c
8
main.c
@ -1,3 +1,4 @@
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "imageInput.h"
|
||||
@ -6,6 +7,8 @@
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
//readImages("mnist_test.info2");
|
||||
|
||||
const unsigned int windowWidth = 800;
|
||||
const unsigned int windowHeight = 600;
|
||||
|
||||
@ -29,7 +32,7 @@ int main(int argc, char *argv[])
|
||||
unsigned char *predictions = NULL;
|
||||
|
||||
printf("Processing %u images ...\n", series->count);
|
||||
|
||||
|
||||
predictions = predict(model, series->images, series->count);
|
||||
|
||||
if(predictions != NULL)
|
||||
@ -65,4 +68,5 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
|
||||
return exitCode;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
117
matrix.c
117
matrix.c
@ -1,35 +1,128 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "matrix.h"
|
||||
#include <stdio.h>
|
||||
|
||||
// TODO Matrix-Funktionen implementieren
|
||||
|
||||
// Matrix erzeugen
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
||||
{
|
||||
|
||||
Matrix matrix;
|
||||
matrix.buffer = NULL;
|
||||
matrix.rows = 0;
|
||||
matrix.cols = 0;
|
||||
|
||||
if (rows == 0 || cols == 0)
|
||||
return matrix; // leere Matrix
|
||||
|
||||
matrix.buffer = (MatrixType *)malloc(rows * cols * sizeof(MatrixType));
|
||||
if (!matrix.buffer)
|
||||
return matrix; // Speicher konnte nicht reserviert werden
|
||||
|
||||
matrix.rows = rows;
|
||||
matrix.cols = cols;
|
||||
|
||||
// Initialisiere alle Werte auf UNDEFINED_MATRIX_VALUE
|
||||
for (unsigned int i = 0; i < rows * cols; i++)
|
||||
matrix.buffer[i] = UNDEFINED_MATRIX_VALUE;
|
||||
|
||||
return matrix;
|
||||
}
|
||||
|
||||
// Matrix Speicher freigeben
|
||||
void clearMatrix(Matrix *matrix)
|
||||
{
|
||||
|
||||
if (!matrix) return;
|
||||
|
||||
if (matrix->buffer)
|
||||
free(matrix->buffer);
|
||||
|
||||
matrix->buffer = NULL;
|
||||
matrix->rows = 0;
|
||||
matrix->cols = 0;
|
||||
}
|
||||
|
||||
// Wert setzen
|
||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
|
||||
if (!matrix.buffer) return;
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols) return;
|
||||
|
||||
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
||||
}
|
||||
|
||||
// Wert auslesen
|
||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
|
||||
}
|
||||
if (!matrix.buffer) return UNDEFINED_MATRIX_VALUE;
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols) return UNDEFINED_MATRIX_VALUE;
|
||||
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
|
||||
return matrix.buffer[rowIdx * matrix.cols + colIdx];
|
||||
}
|
||||
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
||||
// Matrizen addieren
|
||||
Matrix add(const Matrix m1, const Matrix m2)
|
||||
{
|
||||
|
||||
if (!m1.buffer || !m2.buffer) return createMatrix(0,0);
|
||||
|
||||
// gleiche Dimension
|
||||
if (m1.rows == m2.rows && m1.cols == m2.cols)
|
||||
{
|
||||
Matrix result = createMatrix(m1.rows, m1.cols);
|
||||
if (!result.buffer) return result;
|
||||
|
||||
for (unsigned int r = 0; r < m1.rows; r++)
|
||||
for (unsigned int c = 0; c < m1.cols; c++)
|
||||
result.buffer[r * result.cols + c] = m1.buffer[r * m1.cols + c] + m2.buffer[r * m2.cols + c];
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Matrix2 ist ein Spaltenvektor
|
||||
if (m1.rows == m2.rows && m2.cols == 1)
|
||||
{
|
||||
Matrix result = createMatrix(m1.rows, m1.cols);
|
||||
if (!result.buffer) return result;
|
||||
|
||||
for (unsigned int r = 0; r < m1.rows; r++)
|
||||
for (unsigned int c = 0; c < m1.cols; c++)
|
||||
result.buffer[r * result.cols + c] = m1.buffer[r * m1.cols + c] + m2.buffer[r];
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Matrix1 ist ein Spaltenvektor
|
||||
if (m1.rows == m2.rows && m1.cols == 1)
|
||||
{
|
||||
Matrix result = createMatrix(m2.rows, m2.cols);
|
||||
if (!result.buffer) return result;
|
||||
|
||||
for (unsigned int r = 0; r < m2.rows; r++)
|
||||
for (unsigned int c = 0; c < m2.cols; c++)
|
||||
result.buffer[r * result.cols + c] = m1.buffer[r] + m2.buffer[r * m2.cols + c];
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// passt nicht
|
||||
return createMatrix(0,0);
|
||||
}
|
||||
// Matrizen multiplizieren
|
||||
Matrix multiply(const Matrix m1, const Matrix m2)
|
||||
{
|
||||
if (!m1.buffer || !m2.buffer) return createMatrix(0,0);
|
||||
if (m1.cols != m2.rows) return createMatrix(0,0);
|
||||
|
||||
Matrix result = createMatrix(m1.rows, m2.cols);
|
||||
if (!result.buffer) return result;
|
||||
|
||||
for (unsigned int r = 0; r < m1.rows; r++)
|
||||
for (unsigned int c = 0; c < m2.cols; c++)
|
||||
{
|
||||
MatrixType sum = 0;
|
||||
for (unsigned int k = 0; k < m1.cols; k++)
|
||||
sum += m1.buffer[r * m1.cols + k] * m2.buffer[k * m2.cols + c];
|
||||
result.buffer[r * result.cols + c] = sum;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
7
matrix.h
7
matrix.h
@ -6,6 +6,13 @@
|
||||
typedef float MatrixType;
|
||||
|
||||
// TODO Matrixtyp definieren
|
||||
typedef struct
|
||||
{
|
||||
MatrixType *buffer;
|
||||
unsigned int rows;
|
||||
unsigned int cols;
|
||||
|
||||
} Matrix;
|
||||
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
||||
|
||||
@ -197,7 +197,7 @@ static Matrix forward(const NeuralNetwork model, Matrix inputBatch)
|
||||
|
||||
if(result.buffer != NULL)
|
||||
{
|
||||
for(int i = 0; i < model.numberOfLayers; i++)
|
||||
for(int i = 0; i < model.numberOfLayers; i++)
|
||||
{
|
||||
Matrix biasResult;
|
||||
Matrix weightResult;
|
||||
@ -246,7 +246,7 @@ unsigned char *predict(const NeuralNetwork model, const GrayScaleImage images[],
|
||||
{
|
||||
Matrix inputBatch = imageBatchToMatrixOfImageVectors(images, numberOfImages);
|
||||
Matrix outputBatch = forward(model, inputBatch);
|
||||
|
||||
|
||||
unsigned char *result = argmax(outputBatch);
|
||||
|
||||
clearMatrix(&outputBatch);
|
||||
|
||||
@ -8,7 +8,58 @@
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
// TODO
|
||||
// TODO : Fehlerbehandlung
|
||||
// Öffne die Datei zum Schreiben im Binärmodus
|
||||
FILE *file = fopen(path, "wb");
|
||||
if (!file) return;
|
||||
|
||||
// Schreibe den Datei-Tag
|
||||
const char *tag = "__info2_neural_network_file_format__";
|
||||
fwrite(tag, 1, strlen(tag), file);
|
||||
|
||||
// Schreibe die Anzahl der Layer
|
||||
if (nn.numberOfLayers == 0) {
|
||||
fclose(file);
|
||||
return;
|
||||
}
|
||||
|
||||
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
|
||||
int input = nn.layers[0].weights.cols;
|
||||
int output = nn.layers[0].weights.rows;
|
||||
|
||||
fwrite(&input, sizeof(int), 1, file);
|
||||
fwrite(&output, sizeof(int), 1, file);
|
||||
|
||||
// Schreibe die Layer-Daten
|
||||
for (int i = 0; i < nn.numberOfLayers; i++)
|
||||
{
|
||||
const Layer *layer = &nn.layers[i];
|
||||
int out = layer->weights.rows;
|
||||
int in = layer->weights.cols;
|
||||
|
||||
|
||||
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
|
||||
|
||||
|
||||
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
|
||||
|
||||
if (i + 1 < nn.numberOfLayers)
|
||||
{
|
||||
int nextOut = nn.layers[i + 1].weights.rows;
|
||||
fwrite(&nextOut, sizeof(int), 1, file);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
|
||||
// Debuging-Ausgabe
|
||||
printf("prepareNeuralNetworkFile: Datei '%s' erstellt mit %u Layer(n)\n", path, nn.numberOfLayers);
|
||||
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
|
||||
Layer layer = nn.layers[i];
|
||||
printf("Layer %u: weights (%u x %u), biases (%u x %u)\n",
|
||||
i, layer.weights.rows, layer.weights.cols, layer.biases.rows, layer.biases.cols);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user