Compare commits
7 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
59cdcafa94 | ||
|
|
3f539cbe1d | ||
|
|
bd909b2c42 | ||
|
|
ed1325cfba | ||
|
|
9dd4eff0d7 | ||
|
|
f0cd9abe2b | ||
|
|
8722f104a6 |
Binary file not shown.
116
imageInput.c
116
imageInput.c
@ -8,15 +8,127 @@
|
||||
|
||||
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
||||
|
||||
static int read_header(FILE *file, unsigned short *count, unsigned short *width, unsigned short *height)
|
||||
{
|
||||
size_t headerLEN = strlen(FILE_HEADER_STRING);
|
||||
char buffer[BUFFER_SIZE];
|
||||
|
||||
if (headerLEN >= BUFFER_SIZE)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (fread(buffer, 1, headerLEN, file) != headerLEN)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
buffer[headerLEN] = '\0';
|
||||
|
||||
if (strcmp(buffer, FILE_HEADER_STRING) != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (fread(count, sizeof(unsigned short), 1, file) != 1 || fread(width, sizeof(unsigned short), 1, file) != 1 ||
|
||||
fread(height, sizeof(unsigned short), 1, file) != 1)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int read_single_image(FILE *file, GrayScaleImage *image)
|
||||
{
|
||||
unsigned int number_of_pixel = image->width * image->height;
|
||||
|
||||
if (fread(image->buffer, sizeof(GrayScalePixelType), number_of_pixel, file) != number_of_pixel) // fehler beim lesen
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
||||
GrayScaleImageSeries *readImages(const char *path)
|
||||
{
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
|
||||
FILE *file = fopen(path, "rb");
|
||||
if (!file)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned short count, width, height;
|
||||
|
||||
if (!read_header(file, &count, &width, &height))
|
||||
{
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
|
||||
|
||||
if (!series)
|
||||
{
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
series->count = count;
|
||||
series->images = malloc(count * sizeof(GrayScaleImage));
|
||||
series->labels = malloc(count * sizeof(unsigned char));
|
||||
|
||||
if (!series->images || !series->labels)
|
||||
{
|
||||
clearSeries(series);
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
series->images[i].width = width;
|
||||
series->images[i].height = height;
|
||||
series->images[i].buffer = malloc(width * height * sizeof(GrayScalePixelType));
|
||||
|
||||
if (!series->images[i].buffer)
|
||||
{
|
||||
clearSeries(series);
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!read_single_image(file, &series->images[i]))
|
||||
{
|
||||
clearSeries(series);
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (fread(&series->labels[i], 1, 1, file) != 1)
|
||||
{
|
||||
clearSeries(series);
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
return series;
|
||||
}
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
||||
void clearSeries(GrayScaleImageSeries *series)
|
||||
{
|
||||
if (series)
|
||||
{
|
||||
for (int i = 0; i < series->count; i++)
|
||||
{
|
||||
free(series->images[i].buffer);
|
||||
}
|
||||
free(series->images);
|
||||
free(series->labels);
|
||||
free(series);
|
||||
}
|
||||
}
|
||||
@ -119,6 +119,13 @@ void test_readImagesFailsOnWrongFileTag(void)
|
||||
remove(path);
|
||||
}
|
||||
|
||||
// Tests der Hilfsfunktionen
|
||||
|
||||
void test_read_header(void)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
155
matrix.c
155
matrix.c
@ -1,35 +1,178 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "matrix.h"
|
||||
#include <stdio.h>
|
||||
|
||||
// TODO Matrix-Funktionen implementieren
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
||||
{
|
||||
|
||||
Matrix matrix;
|
||||
|
||||
if (rows == 0 || cols == 0)
|
||||
{
|
||||
matrix.rows = 0;
|
||||
matrix.cols = 0;
|
||||
matrix.buffer = NULL;
|
||||
return matrix;
|
||||
}
|
||||
|
||||
matrix.rows = rows;
|
||||
matrix.cols = cols;
|
||||
|
||||
matrix.buffer = (MatrixType *)malloc(rows * cols * sizeof(MatrixType));
|
||||
|
||||
if (matrix.buffer == NULL)
|
||||
{
|
||||
|
||||
matrix.rows = 0;
|
||||
matrix.cols = 0;
|
||||
|
||||
return matrix;
|
||||
}
|
||||
|
||||
for (int i = 0; i < rows; i++)
|
||||
{
|
||||
for (int j = 0; j < cols; j++)
|
||||
{
|
||||
matrix.buffer[i * matrix.cols + j] = UNDEFINED_MATRIX_VALUE;
|
||||
}
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
|
||||
void clearMatrix(Matrix *matrix)
|
||||
{
|
||||
|
||||
if (matrix->buffer != NULL)
|
||||
{
|
||||
free(matrix->buffer);
|
||||
matrix->buffer = NULL;
|
||||
}
|
||||
|
||||
matrix->rows = 0;
|
||||
matrix->cols = 0;
|
||||
}
|
||||
|
||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Ungültiger Index (%u, %u) bei Matrixgröße %u x %u\n", rowIdx, colIdx, matrix.rows, matrix.cols);
|
||||
return; // abbruch falls fehler
|
||||
}
|
||||
|
||||
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
||||
}
|
||||
|
||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Ungültiger Index (%u, %u) bei Matrixgröße %u x %u\n", rowIdx, colIdx, matrix.rows, matrix.cols);
|
||||
return UNDEFINED_MATRIX_VALUE;
|
||||
}
|
||||
|
||||
return matrix.buffer[rowIdx * matrix.cols + colIdx];
|
||||
}
|
||||
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols) // gleiche Dimension
|
||||
{
|
||||
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
||||
|
||||
if (result.buffer == NULL)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
||||
return result;
|
||||
}
|
||||
|
||||
for (int i = 0; i < matrix1.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < matrix1.cols; j++)
|
||||
{
|
||||
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i * matrix2.cols + j];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
if (matrix1.rows == matrix2.rows && matrix2.cols == 1) // Matrix 2 hat eine Spalte
|
||||
{
|
||||
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
||||
|
||||
if(result.buffer == NULL)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
||||
return result;
|
||||
}
|
||||
for (int i = 0; i < matrix1.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < matrix1.cols; j++)
|
||||
{
|
||||
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
if (matrix1.rows == matrix2.rows && matrix1.cols == 1) // Matrix 1 hat eine Spalte
|
||||
{
|
||||
Matrix result = createMatrix(matrix2.rows, matrix2.cols);
|
||||
|
||||
if(result.buffer == NULL)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
||||
return result;
|
||||
}
|
||||
for (int i = 0; i < matrix2.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < matrix2.cols; j++)
|
||||
{
|
||||
result.buffer[i * result.cols + j] = matrix1.buffer[i] + matrix2.buffer[i * matrix2.cols + j];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// passt nicht
|
||||
fprintf(stderr, "Fehler: Matrizen haben unterschiedliche Größen (%u x %u) und (%u x %u)\n",
|
||||
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
|
||||
|
||||
Matrix empty = {NULL, 0, 0};
|
||||
return empty;
|
||||
}
|
||||
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
|
||||
}
|
||||
if (matrix1.cols != matrix2.rows)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Matrizen der Dimension (%u x %u) und (%u x %u) koennen nicht multipliziert werden\n",
|
||||
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
|
||||
|
||||
Matrix empty = {NULL, 0, 0};
|
||||
return empty;
|
||||
}
|
||||
|
||||
Matrix result = createMatrix(matrix1.rows, matrix2.cols);
|
||||
|
||||
if (result.buffer == NULL)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
||||
return result;
|
||||
}
|
||||
|
||||
for (int i = 0; i < matrix1.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < matrix2.cols; j++)
|
||||
{
|
||||
MatrixType sum = 0.0;
|
||||
|
||||
for (int k = 0; k < matrix1.cols; k++)
|
||||
{
|
||||
sum += matrix1.buffer[i * matrix1.cols + k] * matrix2.buffer[k * matrix2.cols + j];
|
||||
}
|
||||
result.buffer[i * result.cols + j] = sum;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
7
matrix.h
7
matrix.h
@ -7,6 +7,13 @@ typedef float MatrixType;
|
||||
|
||||
// TODO Matrixtyp definieren
|
||||
|
||||
typedef struct Matrix {
|
||||
MatrixType *buffer;
|
||||
unsigned int rows;
|
||||
unsigned int cols;
|
||||
} Matrix;
|
||||
|
||||
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
||||
void clearMatrix(Matrix *matrix);
|
||||
|
||||
@ -164,7 +164,7 @@ void test_setMatrixAtFailsOnIndicesOutOfRange(void)
|
||||
Matrix matrixToTest = {.rows=2, .cols=3, .buffer=buffer};
|
||||
|
||||
setMatrixAt(-1, matrixToTest, 2, 3);
|
||||
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, matrixToTest.buffer, sizeof(buffer)/sizeof(MatrixType));
|
||||
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, matrixToTest.buffer, matrixToTest.cols * matrixToTest.rows);
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
|
||||
@ -5,10 +5,9 @@
|
||||
#include "unity.h"
|
||||
#include "neuralNetwork.h"
|
||||
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
// TODO
|
||||
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
@ -16,15 +15,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
||||
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
|
||||
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
|
||||
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
|
||||
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
|
||||
MatrixType buffer3[] = {1, 2, 3};
|
||||
MatrixType buffer4[] = {1, 2};
|
||||
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
|
||||
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
|
||||
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
|
||||
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -40,12 +39,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -63,12 +62,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -86,12 +85,12 @@ void test_loadModelReturnsCorrectWeights(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -111,12 +110,12 @@ void test_loadModelReturnsCorrectBiases(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -138,7 +137,7 @@ void test_loadModelFailsOnWrongFileTag(void)
|
||||
NeuralNetwork netUnderTest;
|
||||
FILE *file = fopen(path, "wb");
|
||||
|
||||
if(file != NULL)
|
||||
if (file != NULL)
|
||||
{
|
||||
const char *fileTag = "info2_neural_network_file_format";
|
||||
|
||||
@ -159,12 +158,12 @@ void test_clearModelSetsMembersToNull(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -181,7 +180,7 @@ void test_clearModelSetsMembersToNull(void)
|
||||
|
||||
static void someActivation(Matrix *matrix)
|
||||
{
|
||||
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||
for (int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||
{
|
||||
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
||||
}
|
||||
@ -192,23 +191,23 @@ void test_predictReturnsCorrectLabels(void)
|
||||
const unsigned char expectedLabels[] = {4, 2};
|
||||
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
||||
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
||||
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
|
||||
GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}};
|
||||
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
||||
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
||||
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
||||
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
|
||||
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
|
||||
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
|
||||
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
|
||||
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
|
||||
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
|
||||
MatrixType biasBuffer1[] = {200, 0};
|
||||
MatrixType biasBuffer2[] = {0, -100, 0};
|
||||
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
||||
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
||||
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
||||
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
||||
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
||||
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
||||
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
||||
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
|
||||
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
|
||||
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
|
||||
{.weights = weights2, .biases = biases2, .activation = someActivation},
|
||||
{.weights = weights3, .biases = biases3, .activation = someActivation}};
|
||||
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
|
||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||
TEST_ASSERT_NOT_NULL(predictedLabels);
|
||||
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
||||
@ -216,11 +215,13 @@ void test_predictReturnsCorrectLabels(void)
|
||||
free(predictedLabels);
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
void setUp(void)
|
||||
{
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void) {
|
||||
void tearDown(void)
|
||||
{
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user