Compare commits
15 Commits
master
...
neuralNetw
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
632bdeb9b9 | ||
|
|
54ca7acca2 | ||
|
|
b998717e19 | ||
|
|
89262e4763 | ||
|
|
75dc5fc631 | ||
|
|
d36d185214 | ||
|
|
6c514d28ca | ||
|
|
3a6cf8a104 | ||
|
|
e25875fac6 | ||
|
|
2dffac5f07 | ||
|
|
b30c2a3808 | ||
|
|
89e99abf8e | ||
|
|
113cb5adb3 | ||
|
|
bf7355b3c5 | ||
|
|
7a373d5940 |
101
matrix.c
101
matrix.c
@ -6,30 +6,119 @@
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
||||
{
|
||||
|
||||
Matrix matrix = {NULL, 0, 0};
|
||||
|
||||
if (rows == 0 || cols == 0)
|
||||
return matrix; //gibt leere Matrix zurück
|
||||
|
||||
matrix.buffer = (MatrixType *)calloc(rows * cols, sizeof(MatrixType));
|
||||
if (matrix.buffer == NULL) //auf verfügbaren Speicherplatz prüfen
|
||||
return matrix;
|
||||
|
||||
matrix.rows = rows;
|
||||
matrix.cols = cols;
|
||||
return matrix; //Matrix zurückgeben
|
||||
}
|
||||
|
||||
void clearMatrix(Matrix *matrix)
|
||||
{
|
||||
|
||||
|
||||
if (matrix != NULL)
|
||||
{
|
||||
free(matrix->buffer); //Speicherplatz bereinigen
|
||||
matrix->buffer = NULL; //Werte auf 0 setzen
|
||||
matrix->rows = 0;
|
||||
matrix->cols = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
|
||||
if (rowIdx < matrix.rows && colIdx < matrix.cols && matrix.buffer != NULL) //Prüft ob Zugriff möglich
|
||||
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
||||
//schreibt 2D element in 1D Liste: Element_Reihe*Matrix_Spalten + Element_Spalte
|
||||
}
|
||||
|
||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols || matrix.buffer == NULL)
|
||||
return 0; // Sicherheitscheck
|
||||
return matrix.buffer[rowIdx * matrix.cols + colIdx];
|
||||
}
|
||||
|
||||
// TODO: Funktionen implementieren
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
|
||||
// immer Probe, gleiche Zeilen der Matrizen
|
||||
// "Elementweise Addition": Probe, ob matrix gleiche größe hat
|
||||
if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols)
|
||||
{
|
||||
Matrix result_add = createMatrix(matrix1.rows, matrix1.cols);
|
||||
for (int r = 0; r < matrix1.rows; r++)
|
||||
{
|
||||
for (int c = 0; c < matrix1.cols; c++)
|
||||
{
|
||||
// first version: matrix_add[r][c] = matrix1[r][c] + matrix2[r][c]
|
||||
MatrixType sum = getMatrixAt(matrix1, r, c) + getMatrixAt(matrix2, r, c);
|
||||
setMatrixAt(sum, result_add, r, c);
|
||||
}
|
||||
}
|
||||
return result_add;
|
||||
}
|
||||
// "Broadcasting": matrix1 hat 1 Spalte
|
||||
if (matrix1.rows == matrix2.rows && matrix1.cols == 1)
|
||||
{
|
||||
Matrix result_add = createMatrix(matrix1.rows, matrix2.cols);
|
||||
for (int r = 0; r < matrix1.rows; r++)
|
||||
{
|
||||
for (int c = 0; c < matrix2.cols; c++)
|
||||
{
|
||||
MatrixType sum = getMatrixAt(matrix2, r, c) + getMatrixAt(matrix1, r, 0);
|
||||
setMatrixAt(sum, result_add, r, c);
|
||||
}
|
||||
}
|
||||
return result_add;
|
||||
}
|
||||
// "Broadcasting": matrix2 hat 1 Spalte
|
||||
if (matrix1.rows == matrix2.rows && matrix2.cols == 1)
|
||||
{
|
||||
Matrix result_add = createMatrix(matrix1.rows, matrix1.cols);
|
||||
for (int r = 0; r < matrix1.rows; r++)
|
||||
{
|
||||
for (int c = 0; c < matrix1.cols; c++)
|
||||
{
|
||||
MatrixType sum = getMatrixAt(matrix1, r, c) + getMatrixAt(matrix2, r, 0);
|
||||
setMatrixAt(sum, result_add, r, c);
|
||||
}
|
||||
}
|
||||
return result_add;
|
||||
}
|
||||
|
||||
return createMatrix(0, 0);
|
||||
}
|
||||
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
MatrixType buffer_add;
|
||||
|
||||
if (!matrix1.buffer || !matrix2.buffer) // Probe ob leere Matrize vorliegt
|
||||
return createMatrix(0, 0);
|
||||
if (matrix1.cols != matrix2.rows) // Probe ob Spalten1 = Zeilen2
|
||||
return createMatrix(0, 0);
|
||||
|
||||
Matrix result_mul = createMatrix(matrix1.rows, matrix2.cols);
|
||||
|
||||
for (unsigned int index = 0; index < matrix1.rows; index++)
|
||||
{
|
||||
for (unsigned int shift = 0; shift < matrix2.cols; shift++)
|
||||
{
|
||||
buffer_add = 0;
|
||||
for (unsigned int skalar = 0; skalar < matrix1.cols; skalar++)
|
||||
{
|
||||
buffer_add += getMatrixAt(matrix1, index, skalar) * getMatrixAt(matrix2, skalar, shift);
|
||||
}
|
||||
setMatrixAt(buffer_add, result_mul, index, shift);
|
||||
}
|
||||
}
|
||||
return result_mul;
|
||||
}
|
||||
5
matrix.h
5
matrix.h
@ -6,6 +6,11 @@
|
||||
typedef float MatrixType;
|
||||
|
||||
// TODO Matrixtyp definieren
|
||||
typedef struct {
|
||||
MatrixType *buffer;
|
||||
unsigned int rows;
|
||||
unsigned int cols;
|
||||
} Matrix;
|
||||
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
||||
|
||||
@ -5,10 +5,74 @@
|
||||
#include "unity.h"
|
||||
#include "neuralNetwork.h"
|
||||
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
// TODO
|
||||
/*
|
||||
typedef struct
|
||||
{
|
||||
Matrix weights;
|
||||
Matrix biases;
|
||||
ActivationFunctionType activation;
|
||||
} Layer;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
Layer *layers;
|
||||
unsigned int numberOfLayers;
|
||||
} NeuralNetwork;
|
||||
|
||||
*/
|
||||
FILE *file = fopen(path, "wb");
|
||||
if (!file)
|
||||
return;
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
const char *tag = "__info2_neural_network_file_format__";
|
||||
fwrite(tag, 1, strlen(tag), file);
|
||||
|
||||
// Schreibe die Anzahl der Layer
|
||||
if (nn.numberOfLayers == 0)
|
||||
{
|
||||
fclose(file);
|
||||
return;
|
||||
}
|
||||
|
||||
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
|
||||
int input = nn.layers[0].weights.cols;
|
||||
int output = nn.layers[0].weights.rows;
|
||||
|
||||
fwrite(&input, sizeof(int), 1, file);
|
||||
fwrite(&output, sizeof(int), 1, file);
|
||||
|
||||
// Schreibe die Layer-Daten
|
||||
for (int i = 0; i < nn.numberOfLayers; i++)
|
||||
{
|
||||
const Layer *layer = &nn.layers[i];
|
||||
int out = layer->weights.rows;
|
||||
int in = layer->weights.cols;
|
||||
|
||||
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
|
||||
|
||||
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
|
||||
|
||||
if (i + 1 < nn.numberOfLayers)
|
||||
{
|
||||
int nextOut = nn.layers[i + 1].weights.rows;
|
||||
fwrite(&nextOut, sizeof(int), 1, file);
|
||||
}
|
||||
}
|
||||
fclose(file);
|
||||
|
||||
// Debuging-Ausgabe
|
||||
printf("prepareNeuralNetworkFile: Datei '%s' erstellt mit %u Layer(n)\n", path, nn.numberOfLayers);
|
||||
for (unsigned int i = 0; i < nn.numberOfLayers; i++)
|
||||
{
|
||||
Layer layer = nn.layers[i];
|
||||
printf("Layer %u: weights (%u x %u), biases (%u x %u)\n",
|
||||
i, layer.weights.rows, layer.weights.cols, layer.biases.rows, layer.biases.cols);
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
@ -16,15 +80,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
||||
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
|
||||
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
|
||||
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
|
||||
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
|
||||
MatrixType buffer3[] = {1, 2, 3};
|
||||
MatrixType buffer4[] = {1, 2};
|
||||
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
|
||||
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
|
||||
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
|
||||
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -40,12 +104,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -63,12 +127,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -86,12 +150,12 @@ void test_loadModelReturnsCorrectWeights(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -111,12 +175,12 @@ void test_loadModelReturnsCorrectBiases(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -138,7 +202,7 @@ void test_loadModelFailsOnWrongFileTag(void)
|
||||
NeuralNetwork netUnderTest;
|
||||
FILE *file = fopen(path, "wb");
|
||||
|
||||
if(file != NULL)
|
||||
if (file != NULL)
|
||||
{
|
||||
const char *fileTag = "info2_neural_network_file_format";
|
||||
|
||||
@ -159,12 +223,12 @@ void test_clearModelSetsMembersToNull(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -181,7 +245,7 @@ void test_clearModelSetsMembersToNull(void)
|
||||
|
||||
static void someActivation(Matrix *matrix)
|
||||
{
|
||||
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||
for (int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||
{
|
||||
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
||||
}
|
||||
@ -192,23 +256,23 @@ void test_predictReturnsCorrectLabels(void)
|
||||
const unsigned char expectedLabels[] = {4, 2};
|
||||
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
||||
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
||||
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
|
||||
GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}};
|
||||
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
||||
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
||||
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
||||
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
|
||||
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
|
||||
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
|
||||
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
|
||||
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
|
||||
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
|
||||
MatrixType biasBuffer1[] = {200, 0};
|
||||
MatrixType biasBuffer2[] = {0, -100, 0};
|
||||
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
||||
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
||||
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
||||
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
||||
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
||||
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
||||
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
||||
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
|
||||
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
|
||||
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
|
||||
{.weights = weights2, .biases = biases2, .activation = someActivation},
|
||||
{.weights = weights3, .biases = biases3, .activation = someActivation}};
|
||||
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
|
||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||
TEST_ASSERT_NOT_NULL(predictedLabels);
|
||||
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
||||
@ -216,11 +280,13 @@ void test_predictReturnsCorrectLabels(void)
|
||||
free(predictedLabels);
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
void setUp(void)
|
||||
{
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void) {
|
||||
void tearDown(void)
|
||||
{
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user