Compare commits

..

No commits in common. "8e4336ce975c1ad703e6903210be630861ebbebd" and "804294b96ef7c3ef7a5b76e149a9a82dee1a4a17" have entirely different histories.

14 changed files with 237 additions and 362 deletions

3
.gitignore vendored
View File

@ -6,6 +6,3 @@ runNumbersTest.exe
numbers.o numbers.o
.vscode/launch.json .vscode/launch.json
.vscode/settings.json .vscode/settings.json
*.o
*.exe
runBintreeTest

View File

@ -1,10 +1,7 @@
#include <string.h> #include <string.h>
#include <stdio.h>
#include "stack.h" #include "stack.h"
#include "bintree.h" #include "bintree.h"
static StackNode *stack;
static TreeNode *tree = NULL;
// TODO: binären Suchbaum implementieren // TODO: binären Suchbaum implementieren
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv), /* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
* `clearTree`: gibt den gesamten Baum frei (rekursiv), * `clearTree`: gibt den gesamten Baum frei (rekursiv),
@ -15,43 +12,8 @@ static TreeNode *tree = NULL;
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added). // if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate) TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
{ {
if (root == NULL)
{
TreeNode *newNode = malloc(sizeof(TreeNode));
newNode->data = malloc(dataSize);
if (newNode->data == NULL)
{
return NULL; // Fehler
}
memcpy(newNode->data, data, dataSize);
newNode->left = NULL;
newNode->right = NULL;
return newNode;
}
int cmp = compareFct(root->data, data);
if (cmp < 0)
{
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
}
else if (cmp > 0)
{
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
}
else
{
if (isDuplicate != NULL)
{
*isDuplicate = 1;
return root;
}
else
{
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
}
}
return root;
} }
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction. // Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
@ -59,19 +21,7 @@ TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFc
// push the top node and push all its left nodes. // push the top node and push all its left nodes.
void *nextTreeData(TreeNode *root) void *nextTreeData(TreeNode *root)
{ {
if (root != NULL)
{
clearStack(stack);
buildStack(root);
}
if(stack != NULL)
{
void* data = top(stack);
stack = pop(stack);
return data;
}
return NULL;
} }
// Releases all memory resources (including data copies). // Releases all memory resources (including data copies).
@ -81,34 +31,32 @@ void clearTree(TreeNode *root)
{ {
return; return;
} }
if (root->left != NULL) if (root->left != NULL)
{ {
clearTree(root->left); clearTree(root->left);
free(root->left); free(root->left);
root->left = NULL;
} }
if (root->right != NULL) else if (root->right != NULL)
{ {
clearTree(root->right); clearTree(root->right);
free(root->right); free(root->right);
root->right = NULL;
} }
root = NULL; root->data = NULL;
} }
// Returns the number of entries in the tree given by root. // Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root) unsigned int treeSize(const TreeNode *root)
{ {
return root == NULL ? 0 : treeSize(root->left) + treeSize(root->right) + 1; int counterL, counterR = 0;
} if (root->left != NULL)
void buildStack(TreeNode *root)
{
if (root == NULL)
{ {
return; counterL = treeSize(root->left) + 1;
} }
buildStack(root->left); else if (root->right != NULL)
stack = push(stack, root->data); {
buildStack(root->right); counterR = treeSize(root->right) + 1;
}
return counterL + counterR;
} }

View File

@ -24,6 +24,4 @@ void clearTree(TreeNode *root);
// Returns the number of entries in the tree given by root. // Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root); unsigned int treeSize(const TreeNode *root);
void buildStack(TreeNode *root);
#endif #endif

View File

@ -79,8 +79,6 @@ int addHighscore(const char *name, double timeInSeconds, unsigned int len)
{ {
HighscoreEntry entry = createHighscoreEntry(name, calculateScore(timeInSeconds, len)); HighscoreEntry entry = createHighscoreEntry(name, calculateScore(timeInSeconds, len));
highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry), compareHighscoreEntries, NULL); highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry), compareHighscoreEntries, NULL);
//HighscoreEntry *temp = highscoreTree->data;
//printf("%s%d\n", temp->name, temp->score);
return entry.score; return entry.score;
} }

View File

@ -1,5 +1 @@
nick;9963 player1;3999
nick;9946
simon;4965
alex;2996
simon;2996

View File

@ -35,20 +35,14 @@ $(program_obj_filesobj_files): %.o: %.c
# -------------------------- # --------------------------
# Unit Tests # Unit Tests
# -------------------------- # --------------------------
stackTests: stack.o test_stack.c $(unityfolder)/unity.c unitTests: stack.o test_stack.c $(unityfolder)/unity.c
$(CC) $(FLAGS) -I$(unityfolder) -o runStackTest test_stack.c stack.o $(unityfolder)/unity.c $(CC) $(FLAGS) -I$(unityfolder) -o runStackTest test_stack.c stack.o $(unityfolder)/unity.c
# -------------------------- # --------------------------
# numbers.c Tests # numbers.c Tests
# -------------------------- # --------------------------
numbersTests: numbers.o bintree.o stack.o test_numbers.c $(unityfolder)/unity.c numbersTests: numbers.o test_numbers.c $(unityfolder)/unity.c
$(CC) $(FLAGS) -I$(unityfolder) -o runNumbersTest test_numbers.c numbers.o bintree.o stack.o $(unityfolder)/unity.c $(CC) $(FLAGS) -I$(unityfolder) -o runNumbersTest test_numbers.c numbers.o $(unityfolder)/unity.c
# --------------------------
# bintree.c Tests
# --------------------------
bintreeTests: bintree.o stack.o test_bintree.c $(unityfolder)/unity.c
$(CC) $(FLAGS) -I$(unityfolder) -o runBintreeTest test_bintree.c bintree.o stack.o $(unityfolder)/unity.c
# -------------------------- # --------------------------
# Clean # Clean

181
numbers.c
View File

@ -14,97 +14,150 @@
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries. // Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries.
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while // Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while
// creating random numbers. // creating random numbers.
void duplicateNumber(unsigned int *numbers, unsigned int len) unsigned int checkArray(unsigned int *array, unsigned int len, unsigned int number)
{ {
if (!numbers || len < 2) int free = 1;
return;
unsigned int numberPicked = rand() % len; // take random spot in array for (int i = 0; i < len; i++)
unsigned int destination = rand() % len; // new spot for duplicated number {
if (array[i] == number)
{
free = 0;
}
}
while (destination == numberPicked) // while same spot get a new one return free;
destination = rand() % len;
numbers[destination] = numbers[numberPicked];
}
/* for qsort
-1 num1 should come before num2
0 num1 and num2 are equal
1 num1 should come after num2
*/
int compare(const void *num1, const void *num2)
{
unsigned int temp1 = *(const unsigned int *)num1;
unsigned int temp2 = *(const unsigned int *)num2;
return (temp1 > temp2) - (temp1 < temp2);
} }
unsigned int *createNumbers(unsigned int len) unsigned int *createNumbers(unsigned int len)
{ {
if (len < 2) srand(time(NULL));
{ unsigned int *array = (unsigned int*)malloc(len * sizeof(unsigned int));
return NULL; int randomNr, counter;
}
srand((unsigned)time(NULL));
TreeNode *root = NULL; if(array == NULL)
unsigned int i = 0;
unsigned int *numbers = malloc(sizeof(unsigned int) * len);
if (!numbers)
{ {
return NULL; return NULL;
} }
while (i < len) for (int i = 0; i < len; i++)
{ {
unsigned int random = (rand() % (2 * len)) + 1; counter = 0;
int duplicate = 0; do
root = addToTree(root, &random, sizeof(unsigned int), compare, &duplicate);
if (!root)
{ {
free(numbers); // malloc-Fehler if (counter == 9)
return NULL; {
} return NULL;
}
randomNr = rand() % (2 * len + 1);
counter++;
} while (!checkArray(array, i, randomNr));
if (!duplicate) array[i] = randomNr;
numbers[i++] = random; printf("%u ", array[i]);
} }
duplicateNumber(numbers, len); printf("\n");
clearTree(root); return array;
return numbers;
} }
// Returns the only number in numbers which is present twice. Returns zero on errors. void merge(unsigned int arr[], unsigned int left, unsigned int mid, unsigned int right)
{
unsigned int i, j, k;
unsigned int n1 = mid - left + 1;
unsigned int n2 = right - mid;
// Create temporary arrays
unsigned int leftArr[n1], rightArr[n2];
// Copy data to temporary arrays
for (i = 0; i < n1; i++)
leftArr[i] = arr[left + i];
for (j = 0; j < n2; j++)
rightArr[j] = arr[mid + 1 + j];
// Merge the temporary arrays back into arr[left..right]
i = 0;
j = 0;
k = left;
while (i < n1 && j < n2)
{
if (leftArr[i] <= rightArr[j])
{
arr[k] = leftArr[i];
i++;
}
else
{
arr[k] = rightArr[j];
j++;
}
k++;
}
// Copy the remaining elements of leftArr[], if any
while (i < n1)
{
arr[k] = leftArr[i];
i++;
k++;
}
// Copy the remaining elements of rightArr[], if any
while (j < n2)
{
arr[k] = rightArr[j];
j++;
k++;
}
}
void mergeSort(unsigned int arr[], unsigned int left, unsigned int right)
{
if (left < right)
{
// Calculate the midpoint
unsigned int mid = left + (right - left) / 2;
// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge the sorted halves
merge(arr, left, mid, right);
}
}
// Returns only the only number in numbers which is present twice. Returns zero on errors.
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len) unsigned int getDuplicate(const unsigned int numbers[], unsigned int len)
{ {
if (!numbers || len < 2) unsigned int temp[len];
{
return 0;
}
unsigned int *copy = (unsigned int *)malloc(len * sizeof(unsigned int));
if (!copy)
{
return 0;
}
memcpy(copy, numbers, len * sizeof(unsigned int));
qsort(copy, len, sizeof(unsigned int), compare);
unsigned int duplicate = 0; unsigned int duplicate = 0;
for (unsigned int i = 1; i < len; i++)
/*if(numbers == NULL || (sizeof(numbers) / sizeof(typeof(numbers)) != len))
{ {
if (copy[i] == copy[i - 1]) return 0;S
}*/
for (int i = 0; i < len; i++)
{
temp[i] = numbers[i];
}
// Sorting arr using mergesort
mergeSort(temp, 0, len - 1);
for (int i = 0; i < len - 1; i++)
{
duplicate = temp[i];
if (duplicate == temp[i + 1])
{ {
duplicate = copy[i];
break; break;
} }
} }
free(copy);
return duplicate; return duplicate;
} }

BIN
numbers.o Normal file

Binary file not shown.

BIN
runNumbersTest.exe Normal file

Binary file not shown.

62
stack.c
View File

@ -10,24 +10,46 @@
// Pushes data as pointer onto the stack. // Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data) StackNode *push(StackNode *stack, void *data)
{ {
StackNode *newNode = malloc(sizeof(StackNode)); StackNode *tempNode, *newNode;
newNode->data = data;
newNode->next = stack; // Set the new node's next pointer to the current top of the stack. newNode = malloc(sizeof(StackNode));
return newNode; // Return the new node as the top of the stack. newNode->value = *(int *)data;
newNode->next = NULL;
if (stack == NULL)
{
stack = newNode;
return stack;
}
tempNode = stack;
while (tempNode->next != NULL)
{
tempNode = tempNode->next;
}
tempNode->next = newNode;
return stack;
} }
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be // Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
// freed by caller.) // freed by caller.)
StackNode *pop(StackNode *stack) StackNode *pop(StackNode *stack)
{ {
StackNode *tempNode;
if (stack == NULL) if (stack == NULL)
{ {
return NULL; // Nothing to pop if stack is empty. return stack;
} }
StackNode *tempNode = stack; tempNode = stack;
stack = stack->next; // Move the stack pointer to the next node. while (tempNode->next->next != NULL)
free(tempNode); // Free the old top node. {
tempNode = tempNode->next;
}
free(tempNode->next);
tempNode->next = NULL;
return stack; return stack;
} }
@ -35,19 +57,35 @@ StackNode *pop(StackNode *stack)
// Returns the data of the top element. // Returns the data of the top element.
void *top(StackNode *stack) void *top(StackNode *stack)
{ {
StackNode *tempNode;
if (stack == NULL) if (stack == NULL)
{ {
return NULL; // Return NULL if stack is empty. return NULL;
} }
return stack->data; // Return the value of the top node. tempNode = stack;
while (tempNode->next != NULL)
{
tempNode = tempNode->next;
}
return &tempNode->value;
} }
// Clears stack and releases all memory. // Clears stack and releases all memory.
void clearStack(StackNode *stack) void clearStack(StackNode *stack)
{ {
while (stack != NULL) StackNode *tempNode;
if (stack == NULL)
{ {
stack = pop(stack); // Pop each element and free memory. return;
}
tempNode = stack;
while (tempNode != NULL)
{
tempNode = pop(tempNode);
} }
} }

View File

@ -9,7 +9,7 @@ The latest element is taken from the stack. */
//TODO: passenden Datentyp als struct anlegen //TODO: passenden Datentyp als struct anlegen
typedef struct Node { typedef struct Node {
void *data; int value;
struct Node* next; struct Node* next;
} StackNode; } StackNode;

View File

@ -1,80 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include "bintree.h"
#include "unity.h"
void sizeTest()
{
TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node1 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node2 = (TreeNode *)malloc(sizeof(TreeNode));
int dataRoot = 2;
int dataNode1 = 1;
int dataNode2 = 3;
root->data = &dataRoot;
root->left = (TreeNode *)node1;
root->right = (TreeNode *)node2;
node1->data = &dataNode1;
node1->left = NULL;
node1->right = NULL;
node2->data = &dataNode2;
node2->left = NULL;
node2->right = NULL;
TEST_ASSERT_EQUAL_INT(3,treeSize(root));
}
void clearTest()
{
TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node1 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node2 = (TreeNode *)malloc(sizeof(TreeNode));
int dataRoot = 2;
int dataNode1 = 1;
int dataNode2 = 3;
root->data = &dataRoot;
root->left = (TreeNode *)node1;
root->right = (TreeNode *)node2;
node1->data = &dataNode1;
node1->left = NULL;
node1->right = NULL;
node2->data = &dataNode2;
node2->left = NULL;
node2->right = NULL;
clearTree(root);
root = NULL;
TEST_ASSERT_EQUAL_INT(0,treeSize(root));
}
void setUp(void)
{
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void)
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}
int main()
{
UNITY_BEGIN();
printf("============================\nNumbers tests\n============================\n");
RUN_TEST(sizeTest);
RUN_TEST(clearTest);
return UNITY_END();
}

View File

@ -3,47 +3,26 @@
#include "numbers.h" #include "numbers.h"
#include "unity.h" #include "unity.h"
void test_createNumbers() void createNumbersTest()
{ {
unsigned int *array;
unsigned int len = 6; unsigned int len = 6;
unsigned int *array = createNumbers(len);
TEST_ASSERT_NOT_NULL(array);
unsigned int duplicate = getDuplicate(array, len); array = createNumbers(len);
TEST_ASSERT_NOT_EQUAL(0, duplicate); for (int i = 0; i < len; i++)
int counter = 0;
for (unsigned int i = 0; i < len; i++)
{ {
if (array[i] == duplicate) printf("%u ", array[i]);
counter++;
} }
printf("\n");
TEST_ASSERT_EQUAL(2, counter); TEST_ASSERT_NOT_NULL(array);
free(array);
} }
void test_createNumbers_values() void duplicateTest()
{ {
unsigned int array[6] = {1, 4, 5, 2, 3, 1};
unsigned int len = 6; unsigned int len = 6;
unsigned int *array = createNumbers(len);
TEST_ASSERT_NOT_NULL(array);
for (unsigned int i = 0; i < len; i++) TEST_ASSERT_EQUAL_INT(1, getDuplicate(array, len));
{
TEST_ASSERT_TRUE(array[i] >= 1);
TEST_ASSERT_TRUE(array[i] <= 2 * len);
}
free(array);
}
void test_getDuplicate()
{
unsigned int array[6] = {1, 2, 4, 4, 6, 7};
unsigned int duplicate = getDuplicate(array, 6);
TEST_ASSERT_EQUAL_UINT(4, duplicate);
} }
void setUp(void) void setUp(void)
@ -56,15 +35,13 @@ void tearDown(void)
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden // Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
} }
int main() int main()
{ {
UNITY_BEGIN(); UNITY_BEGIN();
printf("\n============================\n Numbers tests\n============================\n"); printf("============================\nNumbers tests\n============================\n");
RUN_TEST(createNumbersTest);
RUN_TEST(test_createNumbers); RUN_TEST(duplicateTest);
RUN_TEST(test_createNumbers_values);
RUN_TEST(test_getDuplicate);
return UNITY_END(); return UNITY_END();
} }

View File

@ -3,33 +3,16 @@
#include "stack.h" #include "stack.h"
#include "unity.h" #include "unity.h"
void test_push(void) { void test_push(void)
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Check if the stack is not empty
TEST_ASSERT_NOT_NULL(stack);
// Check if the top element is correct
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(20, *topData); // The last pushed element should be on top
}
void test_push1(void)
{ {
StackNode *testNode = NULL; StackNode *testNode;
int data = 1; int data = 1;
// Test für leeren Stack // Test für leeren Stack
testNode = push(testNode, &data); testNode = push(NULL, &data);
TEST_ASSERT_NOT_NULL(&testNode); TEST_ASSERT_NOT_NULL(&testNode);
TEST_ASSERT_NULL(testNode->next); TEST_ASSERT_NULL(testNode->next);
int *temp = testNode->data; TEST_ASSERT_EQUAL_INT(1, testNode->value);
TEST_ASSERT_EQUAL_INT(1, *temp);
data = 2; data = 2;
@ -38,53 +21,26 @@ void test_push1(void)
TEST_ASSERT_NOT_NULL(&testNode); TEST_ASSERT_NOT_NULL(&testNode);
TEST_ASSERT_NOT_NULL(testNode->next); TEST_ASSERT_NOT_NULL(testNode->next);
TEST_ASSERT_NULL(testNode->next->next); TEST_ASSERT_NULL(testNode->next->next);
temp = testNode->data; TEST_ASSERT_EQUAL_INT(1, testNode->value);
TEST_ASSERT_EQUAL_INT(2, *temp); TEST_ASSERT_EQUAL_INT(2, testNode->next->value);
testNode = testNode->next;
temp = testNode->data;
TEST_ASSERT_EQUAL_INT(1, *temp);
} }
StackNode* setup(void *data, StackNode* next) { StackNode* setup(int value, StackNode* next) {
StackNode* node = malloc(sizeof(StackNode)); // allocate memory on heap StackNode* node = malloc(sizeof(StackNode)); // allocate memory on heap
if (node == NULL) { if (node == NULL) {
perror("malloc failed"); perror("malloc failed");
exit(EXIT_FAILURE); // or handle the error differently exit(EXIT_FAILURE); // or handle the error differently
} }
node->data = data; node->value = value;
node->next = next; node->next = next;
return node; return node;
} }
void test_pop(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
// Push elements to the stack void test_pop(void)
stack = push(stack, &data1);
stack = push(stack, &data2);
// Pop the top element
stack = pop(stack);
// Check if the top element is now the first pushed element
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(10, *topData); // After popping, the first element should be on top
// Pop the last element
stack = pop(stack);
// Check if the stack is empty now
TEST_ASSERT_NULL(stack); // Stack should be NULL now
}
void test_pop2(void)
{ {
int x,y,z; StackNode* node2 = setup(3, NULL);
x = 1; StackNode* node1 = setup(2, node2);
y = 2; StackNode* header = setup(1, node1);
z = 3;
StackNode* node2 = setup(&z, NULL);
StackNode* node1 = setup(&y, node2);
StackNode* header = setup(&x, node1);
StackNode* temp; StackNode* temp;
temp = pop(header); temp = pop(header);
@ -100,36 +56,35 @@ void test_pop2(void)
TEST_ASSERT_NULL(node1->next); TEST_ASSERT_NULL(node1->next);
} }
void test_top(void) { void test_top(void)
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Check the top element
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(20, *topData); // The top element should be 20 (last pushed)
// Pop the top element and check the new top
stack = pop(stack);
topData = top(stack);
TEST_ASSERT_EQUAL_INT(10, *topData); // Now the top element should be 10
}
void test_top2(void)
{ {
int x,y,z; StackNode* node2 = setup(3, NULL);
x = 1; StackNode* node1 = setup(2, node2);
y = 2; StackNode* header = setup(1, node1);
z = 3;
StackNode* node2 = setup(&z, NULL);
StackNode* node1 = setup(&y, node2);
StackNode* header = setup(&x, node1);
int data = *(int *)top(header); int data = *(int *)top(header);
TEST_ASSERT_EQUAL_INT(node2->data, data); TEST_ASSERT_EQUAL_INT(node2->value, data);
}
void test_clear()
{
StackNode* node2 = setup(3, NULL);
StackNode* node1 = setup(2, node2);
StackNode* header = setup(1, node1);
StackNode* temp;
clearStack(header);
temp = header;
int after = 0;
while(temp)
{
after++;
temp = temp->next;
}
TEST_ASSERT_NULL(after);
} }
void setUp(void) void setUp(void)
@ -151,6 +106,7 @@ int main()
RUN_TEST(test_push); RUN_TEST(test_push);
RUN_TEST(test_pop); RUN_TEST(test_pop);
RUN_TEST(test_top); RUN_TEST(test_top);
RUN_TEST(test_clear);
return UNITY_END(); return UNITY_END();
} }