12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- {
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[0 1]\n",
- "[1 0]\n"
- ]
- }
- ],
- "source": [
- "import numpy as np\n",
- "\n",
- "y_out = [[[-0.52742714, -0.8918941 , -0.53989583, -0.874211 ]]]\n",
- "\n",
- "outputs = y_out[0][0]\n",
- "\n",
- "prob_action1 = outputs[:2]\n",
- "prob_action2 = outputs[2:]\n",
- "\n",
- "norm_action1 = [float(i)/sum(prob_action1) for i in prob_action1]\n",
- "norm_action2 = [float(i)/sum(prob_action2) for i in prob_action2]\n",
- "\n",
- "action1 = np.random.multinomial(1,norm_action1)\n",
- "action2 = np.random.multinomial(1,norm_action2)\n",
- "print(action1)\n",
- "print(action2)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|