add timing to person detection
This commit is contained in:
parent
3d24fdf5d0
commit
13549bb594
@ -1,11 +1,12 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import imutils
|
||||
import cv2
|
||||
import argparse
|
||||
from video_stream import imagezmq
|
||||
import numpy as np
|
||||
import cv2
|
||||
import imutils
|
||||
from imutils.object_detection import non_max_suppression
|
||||
from video_stream import imagezmq
|
||||
|
||||
|
||||
'''
|
||||
Usage:
|
||||
@ -25,7 +26,7 @@ def detector(image):
|
||||
|
||||
clone = image.copy()
|
||||
|
||||
(rects, weights) = HOGCV.detectMultiScale(image, winStride=(4, 4), padding=(8, 8), scale=1.05)
|
||||
(rects, _) = HOGCV.detectMultiScale(image, winStride=(4, 4), padding=(8, 8), scale=1.05)
|
||||
|
||||
# draw the original bounding boxes
|
||||
for (x, y, w, h) in rects:
|
||||
|
@ -1,15 +1,26 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from imutils.video import VideoStream
|
||||
from imutils.video import FPS
|
||||
import argparse
|
||||
import imutils
|
||||
import cv2
|
||||
from datetime import datetime, time
|
||||
import numpy as np
|
||||
import time as time2
|
||||
#from datetime import datetime, time
|
||||
import time
|
||||
from statistics import median
|
||||
|
||||
VISUAL_DEBUG=True
|
||||
import imutils
|
||||
from imutils.video import VideoStream
|
||||
#from imutils.video import FPS
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
frame_timer = None
|
||||
contour_timer = None
|
||||
detection_timer = None
|
||||
|
||||
frame_time = []
|
||||
contour_time = []
|
||||
detection_time = []
|
||||
|
||||
VISUAL_DEBUG = True
|
||||
|
||||
def getArgs():
|
||||
""" Arguments """
|
||||
@ -22,18 +33,20 @@ def getArgs():
|
||||
|
||||
def main():
|
||||
args = getArgs()
|
||||
timer = Timer()
|
||||
|
||||
# if the video argument is None, then the code will read from webcam (work in progress)
|
||||
if args.get("video", None) is None:
|
||||
vs = VideoStream(src=0).start()
|
||||
time2.sleep(2.0)
|
||||
time.sleep(2.0)
|
||||
# otherwise, we are reading from a video file
|
||||
else:
|
||||
vs = cv2.VideoCapture(args["video"])
|
||||
|
||||
cv2.namedWindow('Video stream', cv2.WINDOW_NORMAL)
|
||||
detector = DetectionFromFrame(args["min_area"], 0.8)
|
||||
detector = DetectionFromFrame(args["min_area"], 0.5)
|
||||
while True:
|
||||
timer.start_frame_timer()
|
||||
detector.currentFrame = vs.read()
|
||||
detector.currentFrame = detector.currentFrame if args.get("video", None) is None else detector.currentFrame[1]
|
||||
# if the frame can not be grabbed, then we have reached the end of the video
|
||||
@ -42,12 +55,13 @@ def main():
|
||||
|
||||
# resize the frame to 500
|
||||
detector.currentFrame = imutils.resize(detector.currentFrame, width=500)
|
||||
detector.framecounter+=1
|
||||
detector.framecounter += 1
|
||||
if detector.framecounter > 1:
|
||||
cnts = detector.prepareFrame()
|
||||
|
||||
|
||||
for c in cnts:
|
||||
boundRect = cv2.boundingRect(c)
|
||||
timer.start_contour_timer()
|
||||
bound_rect = cv2.boundingRect(c)
|
||||
#(x, y, w, h) = cv2.boundingRect(c)
|
||||
#initBB2 =(x,y,w,h)
|
||||
|
||||
@ -56,19 +70,24 @@ def main():
|
||||
net = cv2.dnn.readNetFromCaffe(prott1, prott2)
|
||||
|
||||
#trackbox = detector.currentFrame[y:y+h, x:x+w]boundRect[1]
|
||||
trackbox = detector.currentFrame[boundRect[1]:boundRect[1]+boundRect[3],
|
||||
boundRect[0]:boundRect[0]+boundRect[2]]
|
||||
trackbox = detector.currentFrame[bound_rect[1]:bound_rect[1]+bound_rect[3],
|
||||
bound_rect[0]:bound_rect[0]+bound_rect[2]]
|
||||
trackbox = cv2.resize(trackbox, (224, 224))
|
||||
#cv2.imshow('image',trackbox)
|
||||
|
||||
timer.start_detection_timer()
|
||||
blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5)
|
||||
net.setInput(blob)
|
||||
detections = net.forward()
|
||||
|
||||
|
||||
for i in np.arange(0, detections.shape[2]):
|
||||
detector.detectConfidentiallyPeople(i, detections, boundRect)
|
||||
cv2.rectangle(detector.currentFrame, (boundRect[0], boundRect[1]),
|
||||
(boundRect[0] + boundRect[2], boundRect[1] + boundRect[3]), (255, 255, 0), 1)
|
||||
|
||||
detector.detectConfidentiallyPeople(i, detections, bound_rect)
|
||||
timer.stop_detection_timer()
|
||||
|
||||
cv2.rectangle(detector.currentFrame, (bound_rect[0], bound_rect[1]),
|
||||
(bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3]), (255, 255, 0), 1)
|
||||
|
||||
timer.stop_contour_timer()
|
||||
|
||||
|
||||
# show the frame and record if the user presses a key
|
||||
@ -82,10 +101,55 @@ def main():
|
||||
detector.firstFrame = None
|
||||
#detector.lastFrame = detector.currentFrame
|
||||
|
||||
timer.print_time()
|
||||
|
||||
# finally, stop the camera/stream and close any open windows
|
||||
vs.stop() if args.get("video", None) is None else vs.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
class Timer:
|
||||
def __init__(self):
|
||||
self.frame_timer = None
|
||||
self.contour_timer = None
|
||||
self.detection_timer = None
|
||||
|
||||
self.contour_time = []
|
||||
self.detection_time = []
|
||||
|
||||
def start_frame_timer(self):
|
||||
self.frame_timer = time.time()
|
||||
|
||||
def get_frame_time(self):
|
||||
return time.time() - self.frame_timer
|
||||
|
||||
def start_contour_timer(self):
|
||||
self.contour_timer = time.time()
|
||||
|
||||
def stop_contour_timer(self):
|
||||
self.contour_time.append(time.time() - self.contour_timer)
|
||||
|
||||
def start_detection_timer(self):
|
||||
self.detection_timer = time.time()
|
||||
|
||||
def stop_detection_timer(self):
|
||||
self.detection_time.append(time.time() - self.detection_timer)
|
||||
|
||||
def print_time(self):
|
||||
average_contour = 0 if not self.contour_time else sum(self.contour_time)/float(len(self.contour_time))
|
||||
average_detection = 0 if not self.detection_time else sum(self.detection_time)/float(len(self.detection_time))
|
||||
|
||||
median_contour = 0 if not self.contour_time else median(self.contour_time)
|
||||
median_detection = 0 if not self.detection_time else median(self.detection_time)
|
||||
|
||||
total_contour = sum(self.contour_time)
|
||||
total_detection = sum(self.detection_time)
|
||||
|
||||
print("Time for Frame: {:.2f}. Contour Total: {:.2f}. Contour Median: {:.2f}. Contour Average: {:.2f}. Detection Total: {:.2f}. Detection Median: {:.2f}. Detection Average: {:.2f}. ".format(
|
||||
self.get_frame_time(), total_contour, median_contour, average_contour, total_detection, median_detection, average_detection))
|
||||
#print("Contour Times:" + str(timer.contour_time))
|
||||
#print("Detection Times:" + str(timer.detection_time))
|
||||
self.contour_time = []
|
||||
self.detection_time = []
|
||||
|
||||
class DetectionFromFrame:
|
||||
def __init__(self, min_size, confidence):
|
||||
@ -132,10 +196,10 @@ class DetectionFromFrame:
|
||||
|
||||
return cnts
|
||||
|
||||
def detectConfidentiallyPeople(self, i, detections, boundRect):
|
||||
CLASSES = ["person"]
|
||||
def detectConfidentiallyPeople(self, i, detections, bound_rect):
|
||||
#CLASSES = ["person"]
|
||||
|
||||
COLORS = [0,255,0]
|
||||
detected_color = (0, 255, 0)
|
||||
#COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
||||
|
||||
confidence = detections[0, 0, i, 2]
|
||||
@ -144,21 +208,21 @@ class DetectionFromFrame:
|
||||
# extract the index of the class label from the `detections`, then compute the (x, y)-coordinates of
|
||||
# the bounding box for the object
|
||||
#idx = int(detections[0, 0, i, 1])
|
||||
box = detections[0, 0, i, 3:7] * np.array([boundRect[2], boundRect[3], boundRect[2], boundRect[3]])
|
||||
(startX, startY, endX, endY) = box.astype("int")
|
||||
#box = detections[0, 0, i, 3:7] * np.array([bound_rect[2], bound_rect[3], bound_rect[2], bound_rect[3]])
|
||||
#(startX, startY, endX, endY) = box.astype("int")
|
||||
# draw the prediction on the frame
|
||||
|
||||
#label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
|
||||
label = "{}: {:.2f}%".format(CLASSES[0], confidence * 100)
|
||||
label = "{:.2f}%".format(confidence * 100)
|
||||
|
||||
#cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
|
||||
cv2.rectangle(self.currentFrame, (boundRect[0], boundRect[1]),
|
||||
(boundRect[0] + boundRect[2], boundRect[1] + boundRect[3]), (0,255, 0), 3)
|
||||
cv2.rectangle(self.currentFrame, (bound_rect[0], bound_rect[1]),
|
||||
(bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3]), detected_color, 3)
|
||||
|
||||
y = boundRect[1] - 15 if boundRect[1] - 15 > 15 else boundRect[1] + 15
|
||||
y = bound_rect[1] - 15 if bound_rect[1] - 15 > 15 else bound_rect[1] + 15
|
||||
|
||||
#cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
|
||||
cv2.putText(self.currentFrame, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1)
|
||||
cv2.putText(self.currentFrame, label, (bound_rect[0], bound_rect[1]-5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, detected_color, 1)
|
||||
#cv2.imshow("Video stream", self.currentFrame)
|
||||
#print("Person found")
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user