|
|
@@ -0,0 +1,202 @@ |
|
|
|
from imutils.video import VideoStream |
|
|
|
from imutils.video import FPS |
|
|
|
import argparse |
|
|
|
import imutils |
|
|
|
import time |
|
|
|
import cv2 |
|
|
|
from datetime import datetime, time |
|
|
|
import numpy as np |
|
|
|
import time as time2 |
|
|
|
|
|
|
|
""" Arguments """ |
|
|
|
ap = argparse.ArgumentParser() |
|
|
|
ap.add_argument("-v", "--video", help="path to the video file") |
|
|
|
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size") |
|
|
|
ap.add_argument("-t", "--tracker", type=str, default="csrt", help="OpenCV object tracker type") |
|
|
|
args = vars(ap.parse_args()) |
|
|
|
|
|
|
|
""" Determine opencv version and select tracker """ |
|
|
|
# extract the OpenCV version info |
|
|
|
(major, minor) = cv2.__version__.split(".")[:2] |
|
|
|
# if we are using OpenCV 3.2 or an earlier version, we can use a special factory |
|
|
|
# function to create the entity that tracks objects |
|
|
|
if int(major) == 3 and int(minor) < 3: |
|
|
|
tracker = cv2.Tracker_create(args["tracker"].upper()) |
|
|
|
#tracker = cv2.TrackerGOTURN_create() |
|
|
|
# otherwise, for OpenCV 3.3 or newer, |
|
|
|
# we need to explicity call the respective constructor that contains the tracker object: |
|
|
|
else: |
|
|
|
# initialize a dictionary that maps strings to their corresponding |
|
|
|
# OpenCV object tracker implementations |
|
|
|
OPENCV_OBJECT_TRACKERS = { |
|
|
|
"csrt": cv2.TrackerCSRT_create, |
|
|
|
"kcf": cv2.TrackerKCF_create, |
|
|
|
"boosting": cv2.TrackerBoosting_create, |
|
|
|
"mil": cv2.TrackerMIL_create, |
|
|
|
"tld": cv2.TrackerTLD_create, |
|
|
|
"medianflow": cv2.TrackerMedianFlow_create, |
|
|
|
"mosse": cv2.TrackerMOSSE_create |
|
|
|
} |
|
|
|
# grab the appropriate object tracker using our dictionary of |
|
|
|
# OpenCV object tracker objects |
|
|
|
tracker = OPENCV_OBJECT_TRACKERS[args["tracker"]]() |
|
|
|
#tracker = cv2.TrackerGOTURN_create() |
|
|
|
# if the video argument is None, then the code will read from webcam (work in progress) |
|
|
|
if args.get("video", None) is None: |
|
|
|
vs = VideoStream(src=0).start() |
|
|
|
time2.sleep(2.0) |
|
|
|
# otherwise, we are reading from a video file |
|
|
|
else: |
|
|
|
vs = cv2.VideoCapture(args["video"]) |
|
|
|
|
|
|
|
"""" Analyzing video frames """ |
|
|
|
# loop over the frames of the video, and store corresponding information from each frame |
|
|
|
firstFrame = None |
|
|
|
initBB2 = None |
|
|
|
fps = None |
|
|
|
differ = None |
|
|
|
now = '' |
|
|
|
framecounter = 0 |
|
|
|
trackeron = 0 |
|
|
|
|
|
|
|
while True: |
|
|
|
frame = vs.read() |
|
|
|
frame = frame if args.get("video", None) is None else frame[1] |
|
|
|
# if the frame can not be grabbed, then we have reached the end of the video |
|
|
|
if frame is None: |
|
|
|
break |
|
|
|
|
|
|
|
# resize the frame to 500 |
|
|
|
frame = imutils.resize(frame, width=500) |
|
|
|
|
|
|
|
framecounter = framecounter+1 |
|
|
|
if framecounter > 1: |
|
|
|
|
|
|
|
(H, W) = frame.shape[:2] |
|
|
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
|
|
gray = cv2.GaussianBlur(gray, (21, 21), 0) |
|
|
|
|
|
|
|
# if the first frame is None, initialize it |
|
|
|
if firstFrame is None: |
|
|
|
firstFrame = gray |
|
|
|
continue |
|
|
|
|
|
|
|
# compute the absolute difference between the current frame and first frame |
|
|
|
frameDelta = cv2.absdiff(firstFrame, gray) |
|
|
|
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1] |
|
|
|
|
|
|
|
# dilate the thresholded image to fill in holes, then find contours on thresholded image |
|
|
|
thresh = cv2.dilate(thresh, None, iterations=2) |
|
|
|
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
cnts = cnts[0] if imutils.is_cv2() else cnts[1] |
|
|
|
|
|
|
|
# loop over the contours identified |
|
|
|
contourcount = 0 |
|
|
|
for c in cnts: |
|
|
|
contourcount = contourcount + 1 |
|
|
|
|
|
|
|
# if the contour is too small, ignore it |
|
|
|
if cv2.contourArea(c) < args["min_area"]: |
|
|
|
continue |
|
|
|
|
|
|
|
# compute the bounding box for the contour, draw it on the frame, |
|
|
|
(x, y, w, h) = cv2.boundingRect(c) |
|
|
|
initBB2 =(x,y,w,h) |
|
|
|
|
|
|
|
prott1 = r'ML-Models\MobileNetSSD_deploy.prototxt' |
|
|
|
prott2 = r'ML-Models\MobileNetSSD_deploy.caffemodel' |
|
|
|
net = cv2.dnn.readNetFromCaffe(prott1, prott2) |
|
|
|
|
|
|
|
CLASSES = ["person"] |
|
|
|
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) |
|
|
|
|
|
|
|
trackbox = frame[y:y+h, x:x+w] |
|
|
|
trackbox = cv2.resize(trackbox, (224, 224)) |
|
|
|
cv2.imshow('image',trackbox) |
|
|
|
blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5) |
|
|
|
net.setInput(blob) |
|
|
|
detections = net.forward() |
|
|
|
|
|
|
|
for i in np.arange(0, detections.shape[2]): |
|
|
|
confidence = detections[0, 0, i, 2] |
|
|
|
|
|
|
|
confidence_level = 0.7 |
|
|
|
|
|
|
|
if confidence > confidence_level: |
|
|
|
# extract the index of the class label from the `detections`, then compute the (x, y)-coordinates of |
|
|
|
# the bounding box for the object |
|
|
|
idx = int(detections[0, 0, i, 1]) |
|
|
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) |
|
|
|
(startX, startY, endX, endY) = box.astype("int") |
|
|
|
# draw the prediction on the frame |
|
|
|
label = "{}: {:.2f}%".format(CLASSES[idx], |
|
|
|
confidence * 100) |
|
|
|
cv2.rectangle(frame, (startX, startY), (endX, endY), |
|
|
|
COLORS[idx], 2) |
|
|
|
y = startY - 15 if startY - 15 > 15 else startY + 15 |
|
|
|
cv2.putText(frame, label, (startX, y), |
|
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) |
|
|
|
|
|
|
|
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 0), 2) |
|
|
|
# Start tracker |
|
|
|
now = datetime.now() |
|
|
|
if differ == None or differ > 9: |
|
|
|
tracker.init(frame, initBB2) |
|
|
|
fps = FPS().start() |
|
|
|
|
|
|
|
|
|
|
|
# check to see if we are currently tracking an object, if so, ignore other boxes |
|
|
|
# this code is relevant if we want to identify particular persons (section 2 of this tutorial) |
|
|
|
if initBB2 is not None: |
|
|
|
|
|
|
|
# grab the new bounding box coordinates of the object |
|
|
|
(success, box) = tracker.update(frame) |
|
|
|
|
|
|
|
# check to see if the tracking was a success |
|
|
|
differ = 10 |
|
|
|
if success: |
|
|
|
(x, y, w, h) = [int(v) for v in box] |
|
|
|
cv2.rectangle(frame, (x, y), (x + w, y + h),(0, 255, 0), 2) |
|
|
|
differ = abs(initBB2[0]-box[0]) + abs(initBB2[1]-box[1]) |
|
|
|
i = tracker.update(lastframe) |
|
|
|
if i[0] != True: |
|
|
|
time2.sleep(4000) |
|
|
|
else: |
|
|
|
trackeron = 1 |
|
|
|
|
|
|
|
# update the FPS counter |
|
|
|
fps.update() |
|
|
|
fps.stop() |
|
|
|
|
|
|
|
# initialize the set of information we'll be displaying on |
|
|
|
# the frame |
|
|
|
info = [ |
|
|
|
("Success", "Yes" if success else "No"), |
|
|
|
("FPS", "{:.2f}".format(fps.fps())), |
|
|
|
] |
|
|
|
|
|
|
|
# loop over the info tuples and draw them on our frame |
|
|
|
for (i, (k, v)) in enumerate(info): |
|
|
|
text = "{}: {}".format(k, v) |
|
|
|
cv2.putText(frame, text, (10, H - ((i * 20) + 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2) |
|
|
|
|
|
|
|
# draw the text and timestamp on the frame |
|
|
|
now2 = datetime.now() |
|
|
|
time_passed_seconds = str((now2-now).seconds) |
|
|
|
cv2.putText(frame, 'Detecting persons',(10, 20), |
|
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) |
|
|
|
|
|
|
|
# show the frame and record if the user presses a key |
|
|
|
cv2.imshow("Video stream", frame) |
|
|
|
key = cv2.waitKey(1) & 0xFF |
|
|
|
|
|
|
|
# if the `q` key is pressed, break from the lop |
|
|
|
if key == ord("q"): |
|
|
|
break |
|
|
|
if key == ord("d"): |
|
|
|
firstFrame = None |
|
|
|
lastframe = frame |
|
|
|
|
|
|
|
# finally, stop the camera/stream and close any open windows |
|
|
|
vs.stop() if args.get("video", None) is None else vs.release() |
|
|
|
cv2.destroyAllWindows() |